Personal protection from mosquitoes & biting midges in the NT

Peter Whelan AM
Medical Entomology
Centre for Disease Control
Department of Health
Northern Territory Government
October 2011
1.0 MOSQUITOES AND BITING MIDGE BITES

Mosquitoes and biting midges (genus *Culicoides* and sometimes erroneously called sand flies) can reach sufficient numbers in various localities to be considered serious pests. The bites themselves can be painful and extremely annoying, and people suffer varying degrees of reaction to bites (Lee 1975). However the possibility of the spread of various diseases by their blood sucking habits to either humans or animals is a more serious outcome. Mosquitoes can carry viruses such as Murray Valley encephalitis, Kunjin, Ross River, and Barmah Forest virus, which cause human disease (Russell 1995). Biting midges do not carry any pathogens in Australia that cause human disease.

Female mosquitoes or biting midges bite to take blood from their hosts, which is necessary for the development of eggs.

Mosquitoes and biting midges show considerable variation in their preference for hosts. Some species feed selectively on cattle, horses, marsupials, amphibians, birds or humans, while other species are relatively indiscriminate feeders.

The time of feeding varies for different species. Many mosquitoes feed just after sunset while others are more active at other times including late in the night, in the late afternoon, or in the early morning. Biting midges are most active in the evening and early morning.

The place of feeding by mosquitoes or biting midges is varied. Some species, such as the brown house mosquito, readily entering houses to feed on people, while others will only bite people outdoors.

When a mosquito or biting midge bites, fine stylets sheathed in the proboscis are inserted into small capillaries in the skin. Blood is sucked up through one of the channels in the stylets, while saliva is injected down an adjacent channel. This saliva contains histamine like substances that the human body recognises as foreign and
often stimulates a bite reaction. Sometimes the saliva can contain viruses or other pathogens that can cause disease.

Some people can become very sensitive after being bitten and suffer a general reaction from further bites. The bites may itch for days, producing restlessness, loss of sleep and nervous irritation. Scratched bites can lead to secondary infections and result in ugly scars. On the other hand, some people become tolerant to particular species and suffer little after-effects from repeated bites.

Biting insects create problems in the enjoyment of outdoor activities, causing a reluctance to enter certain areas after sundown or forcing people to be confined to insect-proof areas at certain times of the year. Personal protection and avoidance measures can offer considerable protection from bites, as well as offering protection against mosquito-borne disease.

2.0 MOSQUITO & BITING MIDGE AVOIDANCE

A sensible precaution to prevent biting insect attack is to avoid areas that are known to have high biting insect activity.

The upper high tide areas near creeks or low-lying areas, particularly near salt marsh habitats, can be significant sources of northern salt marsh mosquitoes *Aedes vigilax* and various other pest mosquitoes. The period of high salt marsh mosquito activity is usually during the late dry season and early wet season in tropical latitudes. Generally they are prevalent for one to two weeks after the highest tides of the month or appreciable rain. Salt marsh mosquito and midge pest calendars are available from the health website http://www.health.nt.gov.au/Medical_Entomology/index.aspx

Dense vegetation near the breeding sites should be avoided during the day over this period. Pest problems during the evening and night can occur within 3 km of productive breeding sites (Whelan et al., 1997).

Other areas of high mosquito activity are the large seasonally flooded areas associated with rivers or drainage lines, flooded coastal swamps, extensive reed swamps and lagoons, ill defined or poorly draining creeks, extensive irrigation areas, and wastewater disposal facilities. Densely shaded areas near these habitats should be avoided during the day, and accommodation areas should be at least 3 km from extensive areas of these habitats.

Extensive areas of mangroves with small dendritic creeks or estuarine areas with muddy banks are potential sources of mangrove biting midges. These midges have seasonal and monthly population peaks with the monthly peaks usually associated with the tidal regime. When camping or choosing a permanent living site, a separation distance of at least 2 km from these areas is recommended unless specific biting insect investigations indicate there are no seasonal pest problems (Whelan 1990, Whelan, Hayes et al. 1997).
If camping or selecting house sites near creeks, rivers or lagoons, choose localities of the water body which have steep margins or little marginal emergent vegetation, have swiftly running water with little marginal pooling or vegetation, or do not arise from or empty into a nearby swamp area. Exposed beaches or cliffs away from mangrove or estuary areas are preferred sites to avoid both mosquitoes and biting midges. In more inland areas, locations on hills or rises at least 3 km from ill defined drainage lines, poorly flowing creeks and seasonally flooded areas should avoid the worst mosquito problems.

In residential areas, a local source of mosquitoes may be the cause of the problem. Check nearby potential artificial sources of mosquitoes such as disused swimming pools, receptacles such as tyres, drums, fallen palm fronds, pot plant drip trays, plant striking buckets, animal water, garden equipment, plastic sheeting, blocked roof gutters, old fishponds, or localised ponding of drains. Sites with mosquitoes breeding can be rectified by physically removing the source or through the use of insecticides. Fish ponds or ponds used for frogs can be rectified by the addition of a few fish.

3.0 SCREENING

The best method of avoiding attack at night is to stay inside insect-screened houses. Screens can be made of galvanised iron, copper, bronze, aluminium or plastic. Near the coast, iron or copper screens are not recommended because of the corrosive action of salt sprays. Homes near biting midge breeding sites require either fine mesh screens or lightproof curtains.

Screens should be of the correct mesh, fit tightly and be in good repair. Biting insects frequently follow people into buildings and for this reason, screen doors should open outward and have automatic closing devices. Insecticides such as permethrin, deltamethrin, bifenthrin, or alpha-cypermethrin sprayed on or around screens may give added protection against mosquitoes or biting midges, but care is needed as some insecticides affect screens.

It is advisable to use an insect proof tent when camping near potential biting insect areas. Coastal areas subject to attack by biting midges require tents to be fitted with a finer mesh screening. Tents can be made more mosquito effective by spraying them inside and out with bifenthrin or alpha-cypermethrin.

4.0 MOSQUITO NETS

Mosquito nets are useful in temporary camps or in unscreened houses near biting insect breeding areas. Generally standard mosquito nets are not sufficient to prevent biting midge attack. White netting is best as mosquitoes accidentally admitted into the net are easily seen and killed. The net is suspended over the bed and tucked under the mattress. An aerosol pyrethrin spray can be used to kill mosquitoes that enter the net. Care is needed not to leave exposed parts of the body in contact with
the net, as mosquitoes will bite through the net. Nets can be made more effective by
dipping impregnation with permethrin (Lines et al. 1985) or by spraying them inside
and out with bifenthrin, lambda-cyhalothrin or alpha-cypermethrin..

5.0 INSECT PROOF CLOTHING

Head nets, gloves and boots can protect parts of the body, which are not covered by
other clothing. Head nets with 1-1.5 meshes to the centimetre are recommended for
good visibility and comfort, and additional treatment of the net with a repellent will
discourage insect attack. Thick clothing or tightly woven material offers protection
against bites. Light coloured, loose fitting long sleeved shirts and full-length trousers
are recommended. Dark clothing such as dark blue denim or black clothing is much
more attractive to salt marsh mosquitoes than white clothing. Many mosquitoes
including salt marsh mosquitoes or Anopheles bancroftii will bite through tight fitting
shirts or pants. For particular risk areas or occupations, protective clothing can be
impregnated with permethrin or other synthetic pyrethroid insecticides such as
bifenthrin to give added protection (Burgess et al. 1988). Sleeves and collars should
be kept buttoned and trousers tucked in socks during biting insect risk periods.
Protection is very necessary near areas of salt marsh, mangroves, or large fresh
water swamps where the various species of mosquitoes may be very abundant
during the day in shaded situations, as well as at night.

6.0 REPELLENTS

Relief from biting insect attack may be obtained by applying repellents to the skin and
clothing (Schreck et al. 1984). Many repellents affect plastics and care is needed
when applying them near mucous membranes such as the eyes and lips.

Repellents with the chemical diethyl-toluamide (DEET) or picaridin give good
protection, with DEET based repellents the best. Some specific repellent products,
such as standard Aerogard, which are formulated to repel flies, are generally not
efficient against mosquitoes or biting midges. Brands with DEET such as Rid,
Tropical Strength Aerogard, Bushman’s, and Muskol, or products with picaridin such
as Repel include specific products that are effective. Those products with higher
amounts of DEET or picaridin are usually the most efficient. Many botanical based
products do not offer sufficient protection. However, p-methane 3,8diol or PMD
(extract of lemon eucalyptus) at a minimum concentration of 30% provides longer
lasting protection compared to other botanicals and has a similar efficacy compared
to the low DEET concentration products.

Application of repellents over large areas of the body or on extensive areas of
children is not recommended particularly those repellents with concentrations of
DEET greater than 20%. Protection from mosquito penetration through open weave
or close fitting clothes can be obtained by applying a light application of aerosol
repellent to the exterior of clothing. Repellents should be supplementary to
protective clothing and should not be regarded as substitutes.

Personal repellents are available as sprays, creams or gels. The gels are best and
creams usually last longer than the aerosol formulations. Repellents can prevent
bites from 1 to 4 hours, depending on the repellents, the species of biting insect, or the physical activity of the wearer. In general aerosol alcohol based repellents will only give one hour protection in the tropics so reapplication is necessary. Products labelled low irritant generally mean less active ingredient.

There are some new metofluthrin vapour active pyrethroid spatial repellents on the market where there is passive evaporation from impregnated strips or pads. These have been shown to be very effective in preventing landing or biting of many species of mosquitoes and midges, even in outdoor situations within a close surround of the devices, or within rooms in more enclosed areas.

Insecticide impregnated mosquito coils offer good protection in relatively wind protected areas, while the allethrin pad candle heated mosquito lanterns or gas operated allethrin mosquito protection devices offer excellent protection in patio or veranda or other outdoor situations. Mosquito lanterns or gas powered pad dispensers are cost effective for events such as barbeques or congregations of people, with two or more dispersed around the group to cater for breeze direction. Candle devices need care with the candles, while the gas powered models are safe and effective in situation on boats and vessels. They work best in still or very light breeze conditions.

Electronic insect repellers that emit ultrasonic or audible sounds do not offer any protection against mosquitoes or biting midges. They are based on a false premise and have been found to have no repellent effect under scientific testing (Curtis 1986). Electronic ultrasonic repellers do not repel mosquitoes or biting midges and should not be relied upon for personal protection (Mitchell 1992).

Plants with reported insecticidal properties such as neem trees and the citrosa plant have not been shown to act as mosquito repellents just by growing in the vicinity of people (Mitchell 1992, Matsuda et al. 1996). Growing or positioning these plants near evening activity areas will not prevent mosquito attack. However some plants have some repellency effects as smoke or liniments (see section 12, emergency biting insect protection)

7.0 ANIMAL DIVERSION
Camping upwind near congregations of stock or domestic animals will serve to divert mosquitoes or biting midges to alternative hosts. Similar considerations can be made when planning residential sites and animal holding areas in a rural situation. Dogs of darker colour tend to attract some species of mosquitoes more than lighter colours and can divert some pest problems from people in close vicinity in outdoor situations in the evening.
8.0 LIGHTING DIVERSION

Many mosquito and biting midge species are attracted to white light. This can cause pest problems in unscreened houses or when camping. The use of yellow or even better red incandescent bulbs or fluorescent tubes rather than white light will reduce the attractiveness of lights to insects. An incandescent or ultra violet light placed at a distance from a house or camp can serve to attract insects to an alternative area. This is more effective if the light is close to the breeding site, or between the breeding site and the accommodation area. The attractive lights should not be close to accommodation or directly down wind of accommodation areas. Light proof curtains or similar screening can be very effective in reducing the attraction of biting insects to areas that are illuminated at night.

9.0 ADULT INSECT CONTROL

If mosquitoes or biting midges have entered a screened area or house or premises they can be knocked down with hand held pyrethrin aerosols. Care should be taken by reading the label to ensure only knockdown aerosols suitable for spraying in the air are used in proximity to people or food.

There are automatic wall mounted dispensers of aerosol for killing adult mosquitoes or flies that dispense mainly pyrethrins. These are registered for use either indoors or outdoors so care is needed in reading the labels. Generally these dispense aerosol in short bursts every 20 to 40 seconds and can last up to 40 hours before refilling. Outdoors devices need to be in wind protected areas such as verandas and patios.

Other devices that can be effective at killing and/or repelling biting insects include mosquito coils (Charlwood & Jolley 1984) and electric plug in insecticide pads. The plug in pad devices are every effective inside buildings but care is needed in reading the labels. These devices are only effective in relatively protected or closed areas such as patios, inside buildings or where there are only slight breezes. Use of coils in outdoor or unscreened areas should be backed up with other measures such as suitable protective clothing or repellents.

Large scale adult biting insect control can be achieved for short terms (hours) by using portable or industrial fog generators, backpack misters, or heavy duty ultra-low-volume aerosol generators to knock down active adult insects. The insecticides of choice in these machines are maldison, bioresmethrin or pyrethrum. Control relies on good access, open vegetation, and light breezes in the direction of the breeding or harbouring sites. Application should only be during the peak biting insect activity period of those insects actually causing the problem, which is usually the late evening and early night.

There are some synthetic pyrethroid aerosol products available as outdoor yard or patio repellents. Control may only be temporary (hours) and re-invasion will usually occur within hours or from one to a few days, depending on the species, nearby vegetation, proximity to breeding sites, environmental conditions and times of activity of the pest species.
Application of the older residual insecticides such as maldison, or permethrin sprayed as a mist spray to point of run off on building surfaces or nearby vegetation can sometimes give short term (a few days to a few weeks) relief. This method is useful as a barrier protection when large numbers of mosquitoes or biting midges are present near accommodation or outdoor use areas (Helson & Surgeoner 1985).

There are some longer term residual synthetic pyrethroids such as bifenthrin, lambda-cyhalothrin and alpha-cypermethrin that can be used as barrier sprays and provide excellent (up to 6 weeks) protection (Standfast et al 2003, Li et al 2010). These residual insecticides can be applied according to label recommendations with the aid of a garden sprayer for dark coloured walls, fences and solid surfaces on the outside of houses or back pack mechanical misters in a band 1-2 m high on low thick vegetation and shrubbery areas around houses. If there is no vegetation screen, black weed matting or shade cloth 1-2 m high all around fence lines in urban settings can substitute for vegetation as the application surface. Application should be at label rates and made to the point of just before runoff. For vegetation care is needed to apply under leaves as well as on leaves and surfaces. Use of these insecticides can give immediate relief from salt marsh mosquito plagues on a house block scale and the effect should last up to 4 weeks.

Application can be done by householders with appropriate equipment and familiarization with the chemical and provisions and safeguards for use, although generally it is advisable for applications to be done by a licensed pesticide company.

Care must be taken with all synthetic pyrethroids around fishponds, fish tanks and other nearby fish habitats to avoid spray drift or run off, as these insecticides are efficient fish poisons.

10.0 INSECTOCUTORS AND INSECT TRAPS

Electric insect insectocutors and other trap or killing devices utilising an attracting light or carbon dioxide have been claimed to clear areas of biting insects and thus protect people. These claims have not been substantiated in outdoor situations with people nearby. While trap devices can attract biting insects, as well as a range of other insects, these devices can not be relied on for protection from biting insect attack (Mitchell 1992). When used in outdoor situations it is possible that they can increase local problems by attracting insects to the vicinity of people. Attractive odours and carbon dioxide emitted by humans then divert the insects from the trap device to the people.

11.0 TREATMENT OF BITES

Relief from bites and prevention of secondary infection can be obtained by the application of various products, either to the skin or internally. The effectiveness of various products is variable, depending on individual reaction. Skin application products include proprietary products such as Eurax, Stingose, Medicreme, Katers
lotion, Dermocaine and Paraderm crème and topical antihistamine products, and non-proprietary products such as paw paw ointment, tea tree oil, eucalyptus oil, aloe vera gel, ice, or methylated spirits.

Ice packs to the general bite site will give usually give immediate relief for painful and itchy bites and swelling or blisters from of mosquitoes and biting midges in particular. The sooner the ice pack is applied after bites or reactions, the better the relief, and can often avoid more intense reactions. Some people have had good results from the application of paw paw ointment following bite reactions in the reducing the itching and aiding the healing process.

Other products for internal application for more general symptoms include oral antihistamine products such as Phenergan, Telfast and Vallergan. Check with your doctor or pharmacist for any products for the latest product and safety information.

12.0 EMERGENCY BITING INSECT PROTECTION

There are a number of emergency measures that can be taken when exposed to biting insects with no protection. Sheltering downwind next to smoky fires can offer considerable protection. Burning dung or aromatic and oil producing foliage from plants such as Hyptis (horehound), Vitex (black plum), Calytrix (Turkey bush), Melaleuca species (Paper bark) and Eucalyptus species (gum trees) can make the smoke more effective. A small native plant Pterocaulon serrulatum (warnulpu) has sticky strongly aromatic leaves, and branches are burnt or the moist leaves are rubbed on the skin by Aborigines in the Katherine district to repel mosquitoes (Aborigines of the NT 1988). Climbing relatively high trees or choosing locations exposed to the wind can also offer protection from some species.

Some protection can be obtained by rubbing exposed skin areas with the leaves of certain plants such as eucalypts, turkey bush, warnulpu, paperbarks or tea-trees that contain volatile oils. However these are not as efficient as proprietary repellents containing DEET or picaridin. Other emergency protection measures include coating the skin with mud, or burying yourself in shallow sand with some form of head protection. If all else fails, keep running. The best form of protection and the most comfortable require an awareness of the potential problems and adequate preparation.

References

Lee, D. J. (1975), ‘Arthropod bites and stings and other injurious effects’, School of Public Health & Tropical Medicine, University of Sydney.

Standfast H., Fanning I. Maloney L., Purdie D. and Brown M. "Field evaluation of Bistar 80SC as an effective insecticide treatment for biting midges (Culicoides) and mosquitoes infesting peri-domestic situations in an urban environment" Bulletin Mos Cont Assoc Aust Vol 15 ;2 2003.

An electronic version is available at:

General enquiries about this publication should be directed to:
Medical Entomology
Department of Health
PO Box 40596, Casuarina, NT 0811
XPhone: (08) 8999 8901
XFacsimile: (08) 8999 8820