The Northern Territory Rheumatic Heart Disease Control Program: an update
Matthew Parnaby, CDC, Darwin

Abstract

In 1996 acute rheumatic fever (ARF) became a notifiable disease in the Northern Territory (NT) and the first NT Rheumatic Heart Disease (RHD) Program was established. Since then the program has grown from a register-based program to an NT-wide RHD Control Program supported by 5.5 staff. There are 2213 people on the RHD register, mainly from the NT, however patients from South Australia, Western Australia, Queensland and New South Wales are also registered. Of those affected by ARF/RHD, 94% are Indigenous and 80% live in remote and isolated communities. In 2007 automated master charts were developed to report back to health centres those patients requiring secondary prophylaxis (benzathine penicillin injections). Patients who should be receiving regular benzathine penicillin injections increased from 83% in 2007 to 94% in 2010 by using this automated process. Also, over this period the proportion receiving 80% or more of their secondary prophylaxis doses increased yearly. The Program reports back to health centres their prophylaxis coverage for the RHD patient and coverage overall for the health centre. Reporting back to communities is a fundamental requirement to assist staff to improve services to ARF/RHD patients in the NT.

Key words: rheumatic heart disease; acute rheumatic fever; prophylaxis coverage; Register

Introduction

Acute rheumatic fever (ARF) became a notifiable disease in the Northern Territory (NT) in 1996. Also that year the NT Rheumatic Heart Disease (RHD) Program was established in the Top End (Darwin) of the Territory. This was followed by a program being established in Central Australia (Alice Springs) in 2000.
Prior to the commencement of the official RHD Program, patient information lists were kept and RHD patients were managed by a number of dedicated specialists and medical officers serving Indigenous people and remote communities. The very high disease prevalence among Indigenous Territorians highlighted the need to establish a formalised program to gain more support for and understanding of the disease. Along with supporting and educating health professionals the aim of the RHD Program was to provide health education to patients, family members and communities to create a greater awareness of the disease.

The register-based RHD program established in 1996 by the NT Centre for Disease Control (CDC) was formed in partnership with a number of organisations including Menzies School of Health Research, the NT Heart Foundation and remote health centres. The main aim was to assist in the management of cases.

Separate RHD registers were established in both the Top End and Central Australia. Both were managed independently, with each having steering committees to provide support and guidance for the delivery of services.

In 2007 a significant change occurred with the amalgamation of both RHD registers into a single web-based Territory-wide ‘NT RHD Register’. The web-based NT RHD Register allows approved clinicians to access the Register in order to obtain up-to-date information on RHD patients including their prophylaxis and specialist follow-up requirements.

In the beginning securing adequate funding was not easy with funding being mostly short term. In 2008, with the release of the National Rheumatic Fever Strategy, longer term funding was provided ensuring the future continuation and development of the program to meet the growing needs of the Territorian population.

Continuous development has seen a register-based program grow into a full RHD Control Program that is supported by the 5.5 CDC RHD staff NT-wide. The NT RHD Advisory Committee, made up of non-government, government, education and private sector specialists provides guidance and advice on program activities. The NT RHD Control Program works in partnership with 113 government and Aboriginal-controlled health services throughout the NT providing services to over 1800 active patients. Cross-border support is given to an additional 17 health centres in SA, WA and QLD. Register coordinators manage and maintain the register, provide training to clinicians on the use and capabilities of the register and send feedback and reports to clinics on prophylaxis coverage and specialist recalls. RHD Public Health Nurses provide much needed support to remote health centres in the development and delivery of services, provide training to urban and remote clinicians, and importantly, educate and encourage patients, their families and communities. Other CDC staff in the regional centres assist with RHD work, especially the newly expanded NT Trachoma Program staff as many strategies are similar.

There are 2213 people on the register under the direction of the NT RHD Control Program currently servicing mainly the NT, but also, South Australia, Western Australia, Queensland and New South Wales. Of the 2029 patients in the NT, 1823 receive active follow-up and 1220 are identified as requiring secondary prophylaxis to prevent recurrent attacks of ARF. Children and adolescents (<15 years) make up 10.5% of all registered patients in the NT. Over 425 of all RHD patients in the NT are classified as having severe cardiac disease which impacts on daily activities.

Primary chemoprophylaxis refers to the timely and curative antibiotic treatment of group A streptococcus infections to prevent an initial occurrence of ARF. Secondary prophylaxis is defined as regular administration of antibiotics (ideally benzathine penicillin G) to patients with a previous history of ARF/RHD to prevent further group A streptococcal infections and a recurrence of ARF.

Of those affected by ARF/RHD, 94% are Aboriginal and most (80%) live in remote and isolated communities creating unique challenges for specialist follow-up.

Acute Rheumatic Fever

Figure 1 shows notified cases of ARF from 2003 to 2010. Since 2008 notifications for first episodes of ARF have been fairly stable.
Recurrent episodes of ARF continue to make up approximately 30% of all notifications. Cases classified as ‘unknown’ are patients with a first recorded case of ARF but with established RHD. Unknown cases range in age between 20 and 34 years.

Collection and analysis of data provides the Program with useful information to better direct resources and address those at risk of recurrent attacks.

Prophylaxis

Over the past 2 years the NT RHD Control Program has seen a number of changes and improvements in treatment outcomes for patients and services to health centres and specialists.

The proportion of patients on the register who require benzathine penicillin as prophylaxis has increased from 83% in 2007 to 94% in 2010. A contributing factor to this increase is the development of automated master charts that are sent through to health centres. In the past, staff at health centre were required to identify patients for secondary prophylaxis. The automated master charts have taken over this task of going through individual charts to identify patients and therefore have been more complete and have not allowed patients to “fall through the cracks”.

Since 2007, there has been a marked increase in the doses of benzathine penicillin delivered for secondary prophylaxis.

Table 1 shows the number of doses dispensed.

Table 1. Benzathine penicillin doses delivered 2007 - 2010

<table>
<thead>
<tr>
<th>Year</th>
<th>Doses Given</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>6389</td>
</tr>
<tr>
<td>2008</td>
<td>6765</td>
</tr>
<tr>
<td>2009</td>
<td>7791</td>
</tr>
<tr>
<td>2010</td>
<td>8309</td>
</tr>
</tbody>
</table>

Table 2 shows there has been a marked drop in the number of patients receiving less than 50% of their prophylaxis throughout the year and a marked increase in the number of patients receiving 50-80%. While the number falls short of the targeted 80% of injections for all, RHD patients are presenting for more of their prophylaxis. Indeed the overall coverage rates
since 2007 for all people who require secondary prophylaxis shows an increasing trend from 54% in 2007 to 61% in 2010.

During 2010, the NT RHD Control Program began reporting back prophylaxis coverage to health centres for all of their patients and for each health centre. This gave regular feedback on coverage of prophylaxis for each 4 week period throughout the year. The feedback given is presented in graph form to track variations between the periods.

As an example, Figure 2 is the Territory-wide graph showing the numbers of injections of benzathine penicillin for 2010 delivered per 4 week period 2010 (note scale is 580-660 doses).

Updates on prophylaxis are generated by the NT RHD Register and provided to health centres on a regular basis to document which patients have received prophylaxis as well as to check the accuracy of the Register data.

Figure 3 is an example of such prophylaxis reports sent through to communities.

Table 2. Secondary prophylaxis coverage 2007 - 2010

<table>
<thead>
<tr>
<th>Year</th>
<th><50%</th>
<th>50-80%</th>
<th>>80%</th>
<th>Overall coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>44.35%</td>
<td>33.88%</td>
<td>21.77%</td>
<td>54.6%</td>
</tr>
<tr>
<td>2008</td>
<td>42.37%</td>
<td>36.24%</td>
<td>21.39%</td>
<td>56.2%</td>
</tr>
<tr>
<td>2009</td>
<td>35.39%</td>
<td>40.71%</td>
<td>23.90%</td>
<td>59.7%</td>
</tr>
<tr>
<td>2010</td>
<td>32.58%</td>
<td>41.54%</td>
<td>25.88%</td>
<td>61.1%</td>
</tr>
<tr>
<td>Total</td>
<td>38.42%</td>
<td>38.25%</td>
<td>23.32%</td>
<td>58.2%</td>
</tr>
</tbody>
</table>

Figure 2. Total benzathine penicillin G doses
Conclusion

There have been continuous improvements in the NT RHD Control Program over the past 2 years, including the capacity to better utilise and report on RHD Register data.

The data are used to guide program activities and to report back to key stakeholders including remote health services and funding agencies on the progress of the NT RHD Control Program.

Reporting back to communities is a fundamental requirement needed to assist staff and to improve services to ARF/RHD patients in the NT.

References

3. National Heart Foundation of Australia (RF/RHD guidelines development working group) and the Cardiac Society of Australia and New Zealand. Diagnosis and management of acute rheumatic fever and rheumatic heart disease in Australia – an evidence-based review. 2006.

Editorial comment

Vicki Krause and Keith Edwards, CDC, Darwin

Rheumatic heart disease (RHD) is a serious but preventable disease caused by recurrent attacks of acute rheumatic fever (ARF) following streptococcal bacterial infection. Although RHD is now rare in non-Indigenous Australians, it remains one of the major killers of young Aboriginal and Torres Strait Islander people.

The disease needs to be taken very seriously in the Northern Territory (NT) because the rates of ARF and RHD are exceedingly high and the consequences when uncontrolled are grim. The graph (Figure) below shows just how grim. Since 2007 there have been 68 deaths; 16 in 2007, 18 in 2008, 14 in 2009, 14 in 2010 and already 6 deaths in 2011 with 2 of these deaths in young people in their 20s.

The bacterial infection that precedes ARF, Group A streptococcal infection, is highly...
prevalent in settings where there is overcrowding, sub-optimal housing conditions, and limited education.

Medical management can reduce recurrent attacks of ARF due to streptococcal infections but requires patient understanding and commitment in the setting of well staffed and resourced primary health care systems.

The NT has recognised the importance of ARF and as reported in the preceding article has had a dedicated control program since 1996 and is considered a leader in this area. The NT RHD Control Program provides a Register to assist the recall and management of patients who have suffered ARF with the main aim to prevent further attacks of ARF. This is achieved by client education, health staff education and support to all remote clinics to;

1. ensure all clients receive an injection of benzathine penicillin G (LA Bicillin) every 4 weeks;
2. ensure that skin and throat infections are treated early; and
3. ensure that those clients, with established damage to their hearts, receive timely follow up by physicians, paediatricians, cardiologists and dentists.

Primary prevention of ARF lies mainly with improvements to housing and hygiene, but also involves the effective treatment of streptococcal sore throat and skin infection, with the goal of preventing a first attack of rheumatic fever. The NT RHD Control Program supports early treatment of these infections through staff education, recognising that service delivery depends on adequate provision of trained staff at the primary health care level.

Secondary prevention of rheumatic fever is defined as regular administration of antibiotics (ideally benzathine penicillin G given intramuscularly) to patients with a previous history of ARF/RHD in order to prevent group A streptococcal infection and a recurrence of ARF.

It is critical for clients not to miss any of their 4 weekly injections as this allows for streptococcal infection to occur with the risk of recurrent ARF. Most patients require injections every 4 weeks for a minimum of 10 years and many require these injections for life. This poses a significant challenge for the patient and the health system. The average client in the NT as documented in the preceding article receives less than 50% of their required injections, and while improving yearly, only 26% of patients in 2010 received 80% of their required injections.

Figure 1 Deaths due to rheumatic heart disease 2007 – 2011 YTD

Source :NT Rheumatic Heart Disease Register
* 5 year old child

<table>
<thead>
<tr>
<th>Year</th>
<th>Number of deaths per year</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td></td>
</tr>
</tbody>
</table>
The reasons for this are many but include: clinic staff turnover, heavy workload, patient mobility, staff and client attitudes.

The World Health Organisation in 2001 recommended that the establishment of a national rheumatic fever prevention program is essential in countries where ARF and RHD remain significant health problems. In November 2006, the Australian Health Minister Advisory Council (AHMAC) established the Rheumatic Heart Disease Working Group consisting of experts and jurisdictional representatives, including members from the NT, to advise on a collaborative approach to the management of ARF and RHD. In 2008, the Commonwealth Budget committed $12.2 million over 5 years (to 2012) for the Rheumatic Fever Strategy to address ARF and RHD among Indigenous children. It includes:

- establishment of a National Co-ordination Unit - RHD Australia - located in Darwin with Menzies School of Health Research in partnership with James Cook University and Baker IDI;
- continuation of the ARF/RHD register and control program in the Northern Territory; and
- establishment of new register and control program sites in Western Australia and Queensland.

Under the Strategy the NT Department of Health provides important technical and logistic support to assist other states in the establishment of their programs and registers.

Uncontrolled, RHD progresses to a disease state that restricts lifestyle and, as seen in the NT, leads to early death in too many cases.

Almost all cases of RHD are preventable. Steps are in place to address the circumstances that promote ARF and its sequelae RHD but progress is slow. The NT RHD Control Program has established a plan to assist management that is showing results. Such efforts need to be commended, maintained and enhanced.
Updated Guidelines for the Control of Leprosy in the Northern Territory

Lesley Scott, CDC, Darwin

The first edition of the Guidelines for the Control of Leprosy in the Northern Territory was published in 1986 with John Hargrave, Tania Wallace and Doug Lush acknowledged as the authors of the document on which the Guidelines were substantially based. A second edition was published in October 2002 with Nathan Zweck and Lesley Scott acknowledged as the updating authors of this edition. Changing local circumstances, accumulated data, new medical evidence and internationally recognised recommendations since then have been considered in the production of this third edition. Elliot Coates, Joanne Judd, Kerryn Gisjbers, Lesley Scott and Vicki Krause each contributed to the rewriting and coordination of this edition.

The third edition December 2010 is now available at http://www.health.nt.gov.au/Centre_for_Disease_Control/Publications/CDC_Protocols/index.aspx. These Guidelines are intended as a resource for Northern Territory (NT) clinicians including remote NT health centres to implement leprosy diagnosis and management. It is hoped they may also be useful in the control of leprosy more widely in Australia.

Background information is provided on the epidemiology, disease transmission, presenting symptoms, diagnosis, treatment and case management of leprosy.

Edition Changes

In the 2002 edition the most important changes to note were:

1. A change in the multi-drug treatment (MDT) regimen with rifampicin prescribed monthly rather than daily and the durations fixed at 6 and 24 months for paucibacillary (PB) and multibacillary (MB) leprosy, respectively.

2. A reduction in the duration of follow-up for cured cases from annual reviews for the rest of life to:
 - PB patients who had nerve function impairment (NFI) at time of diagnosis to be for 18 months beyond the completion of 6 months of treatment.
 - MB patients with a bacillary index (BI) \(\geq 4 \) to be for 5 years beyond the completion of 24 months of treatment.
 - Discharge after treatment completion for all others.

3. A reduction in the duration of follow-up for contacts after the diagnosis of an index case to annual reviews for 6 years for MB contacts and a single review for PB contacts.

4. The introduction of standardised clinical assessment voluntary muscle test-sensory test (VMT-ST) for the common nerve function impairments.

2010 Edition (third edition)

In the 2010 edition the most important changes to note are:

1. A reduction in treatment duration to 12 months MDT for MB patients with a BI <4.

2. Usage (for NT treatment purposes) of the WHO classification for leprosy.

3. Continuation of previous treatment strategies for single lesion PB patients based on current evidence and despite WHO recommendations to the contrary.

4. Introduction of photos to assist clinicians in the diagnosis of leprosy cases.

5. Updating of statistics and graphs to reflect the up-to-date NT leprosy situation.

6. Introduction of a list of differential diagnoses in cases of suspected leprosy.

7. Revision and restructure of the guidelines to ensure clarity both in terms of clinical presentation, investigation and current treatment.

8. Adjustment of the recommendations for children with doses only provided for 10-14 year olds and that for children <10 years old, expert advice be obtained for proportionally reduced doses.

9. Introduction of special-case considerations to aid in the management of leprosy including in the case of co-existent HIV and TB infection, pregnancy, difficulties with certain medications and defaulters.

10. Recommendations on the usage of thalidomide in the management of the Type 2, erythema nodosum leprosum (ENL) response.
11. Clarification of optimal current prevention strategies as part of the push to eradicate leprosy from the NT.

12. A change in duration of recommended follow-up after completion of leprosy treatment (Table 1).

Table 1. Treatment with World Health Organization (WHO)-MDT*

<table>
<thead>
<tr>
<th>Classification</th>
<th>PB (after 6 months of MDT)</th>
<th>MB (after 12 or 24 months of MDT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk factors</td>
<td>NFI at diagnosis</td>
<td>BI</td>
</tr>
<tr>
<td>CDC follow-up</td>
<td>No</td>
<td>0 to 3+</td>
</tr>
<tr>
<td>after completion of treatment</td>
<td>Yes</td>
<td>4+ to 6+</td>
</tr>
<tr>
<td></td>
<td>Anually for 2 years after MDT completed</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>3 monthly after MDT completed</td>
<td>3 monthly for 2 years then annually until 5 years after MDT</td>
</tr>
<tr>
<td></td>
<td>3 monthly for 2 years then annually until 5 years after MDT</td>
<td></td>
</tr>
<tr>
<td>Type of follow-up</td>
<td>Clinical#</td>
<td>Clinical#</td>
</tr>
<tr>
<td></td>
<td>Clinical§</td>
<td>Clinical§</td>
</tr>
<tr>
<td></td>
<td>Smear†</td>
<td>Smear†</td>
</tr>
<tr>
<td></td>
<td>Eyes§</td>
<td>Eyes§</td>
</tr>
</tbody>
</table>

* Multiple drug regimen where rifampicin and dapsone in combination (and clofazimine in MB leprosy) was given for at least a 6 month (PB) or 12 or 24 month (MB) period, regardless of whether rifampicin was given monthly or daily.

Clinical means skin, nerve, and nerve function impairment (VMT-ST) assessments, including visual acuity.

† Take follow-up smears from 2 sites with the highest bacillary index at the time of diagnosis.

§ Eyes means annual slit-lamp examination by an ophthalmologist to detect silent iritis.

Editorial comment

Vicki Krause, CDC, Darwin

Almost every year a case of leprosy is notified in the Northern Territory. The “telling” fact however is that on average it takes over 2 years for a case of leprosy to be diagnosed. In the setting of a disease with low prevalence one of the most difficult tasks is keeping the ‘thought of leprosy’ in the minds of diagnosing clinicians and also in the minds of those in the population who are at risk.

So, how to meet this challenge? We need to keep leprosy in the differential diagnosis of patients presenting with skin and nerve pathology. Keeping the topic alive in local health literature is one way to do it and alerting clinicians to these up-to-date Guidelines provides clinicians with information and clear management instructions. Visual reminders may also help. Figure 1 and Figure 2 below are examples of the skin and nerve pathology seen in leprosy.
 Stocks of 2011 seasonal influenza vaccine are now available from regional pharmacies and providers should place orders and commence vaccinating patients and staff now.

The 2011 seasonal influenza vaccine offers protection against the 3 strains of flu virus predicted to be most commonly circulating in 2011, including the pandemic strain of 2009. The 3 strains include:

- A/California/7/2009 (H1N1)-like virus (this was in the pandemic (H1N1) 2009 vaccine)
- A/Perth/16/2009 (H3N2)-like virus
- B/Brisbane /60/2008-like virus

While the 2011 seasonal influenza vaccine contains the same 3 viruses as the 2010 vaccine, the yearly flu vaccine is effective for only 12 months (range 9 to 18 months) and therefore each year a new vaccine is required. It is recommended that everyone be vaccinated with the 2011 vaccine as early in the season as possible.

Pandemic influenza vaccine (Panvax®) is no longer manufactured and no further doses will be distributed. Any stock of Panvax® should be discarded in a sharps container.

Eligibility for free vaccine

Providers are urged to vaccinate those most at risk of complications of severe influenza.

- All non–Indigenous people 65 years and older
- All Indigenous people 15 years and older
- All pregnant women – (any trimester)
- All infants/people 6 months to 64 years with medical conditions predisposing them to severe influenza, namely*:
 - cardiac disease
 - chronic respiratory conditions
 - chronic illnesses requiring medical follow-up or hospitalisation in the preceding year
 - chronic neurological conditions
 - people with impaired immunity, and
 - children aged 6 months to 10 years who receive long term aspirin therapy.

Which vaccine to use?

There are some changes to the brands of vaccines used throughout the Northern Territory (NT) in 2011 compared to previous years.

In 2010 Fluvax® was withdrawn for use in children < 5years of age due to an increase in reports of febrile convulsions. This decision continues into 2011 with the additional preference of also not using Fluvax® in children <10 years of age if an alternative vaccine is available. The NT has elected to use an alternative vaccine for this age group.

Providers are encouraged to use the brand of vaccine described in Table 1.

Patients who request, but are not eligible for government funded seasonal influenza vaccine should be offered the appropriate dose via a prescription and private purchase.

Refer to the Australian Immunisation Handbook (page 187 or http://immunise.health.gov.au) for alternative vaccines.

Recording 2011 seasonal influenza vaccine

All vaccines administered should be recorded in line with defined clinic protocols. Electronic copies of all encounters should be forwarded to the Centre for Disease Control on fax 89228897 for entry onto the NT Immunisation Register.

The NT Immunisation Register will record all influenza vaccines given from January 2011.

The Australian Childhood Immunisation Register will record any vaccines given to children under the age of 7 years.
The DoH website has up-to-date information about influenza vaccine and where the vaccination is available. View it at http://www.health.nt.gov.au/Flu/vaccination

The Australian Government Department of Health and Ageing has designed a poster, a provider fact sheet and patient brochures in multiple languages which will be distributed to clinics in the coming weeks. If you require further copies please follow the contact details on the brochure and fact sheets.

*2 doses of vaccine given at least 1 month apart is recommended for children ≤ 9 years of age who are receiving influenza vaccine for the first time.
*If a child 6 mths to ≤ 9 years of age receiving influenza vaccine for the first time inadvertently does not receive the second dose in the same year, he/she should have 2 doses given in the following year.
*Children requiring 2 doses of influenza vaccine should have them administered no closer than 28 days apart.
* Where 2 doses of 2011 seasonal influenza vaccine are required the same brand of vaccine should be administered where possible.

Centre for Disease Control contact details

Darwin 8922 8044
Katherine 8973 9049
Alice Springs 8951 7540
Tennant Creek 8962 4259
Nhulunbuy 8987 0357
An investigation into the amount of chlamydia testing performed by various health care providers in the Northern Territory

Jiunn-Yih Su and Nathan Ryder, CDC, Darwin

Abstract

Objectives

To investigate the amount of and the trend in chlamydia testing by various health care providers in the Northern Territory (NT) in recent years.

Methods

Comprehensive chlamydia testing data for the NT were collected from the Medicare website, Royal Darwin Hospital, and a private pathology laboratory performing all chlamydia tests for the Defence Force clinics. We calculated the number of tests by sex, location and type of services providers, and financial year, including 2007/8, 2008/9 and 2009/10. Due to small numbers from the Defence Force these tests were not included in the analysis.

Results

There was an overall mild increasing trend in chlamydia testing during the study period. General practitioners (GPs) and health clinics in remote areas performed 44% of the tests while their urban counterparts were responsible for 24% of the tests. Specialist public sexual health clinics and public hospital contributed to 11% and 12% of the tests respectively. An increasing trend in chlamydia testing was noted in urban GPs and health clinics, specialist public sexual health clinics. Over 65% of the tests ordered by both remote and urban based GPs and health clinics were performed in females.

Conclusions

There is a need for increased testing of men by GPs and health clinics across the NT. As urban-based clinicians contributed to only 37% of all chlamydia tests but service 2/3 of the population, there is also a need to promote targeted chlamydia testing among them.

Key words: Chlamydia; testing data

Introduction

Chlamydia has been the most commonly notified disease in the Northern Territory (NT) in the last 10 years. The NT has consistently recorded the highest notification rate of chlamydia among all States and Territories in Australia in the last 5 years. The notification rate is higher among females, Aboriginal people, and in some geographical areas.

Previous studies on point prevalence estimates suggest that there were true differences in the prevalence of chlamydia in these groups. However, as testing rates have been shown to strongly correlate with notification rates, it remains uncertain the extent to which differing testing rates contribute to the notification rate. Therefore, in order to improve our understanding of the epidemiology of chlamydia in the NT, it is essential to collect comprehensive testing data and examine the trends in testing.

The National Sexually Transmitted Infections (STI) strategy, along with the NT Indigenous Sexual Health Strategic Plan, recommend that the majority of chlamydia testing be performed by primary care providers, and that public specialist sexual health clinics, such as the Clinics 34s, target populations with either higher prevalence of infection or reduced access to testing. Analysing testing and notification rates in urban areas provide a means to assess the extent to which this applies in the NT currently.

This study aimed to investigate the amount and trend of chlamydia testing in the NT, and analyse the relative contribution by health care providers in a variety of settings in both men and women.

Methods

A retrospective study was conducted to examine the testing data for chlamydia for the NT. The study period was from 1 July 2007 to 30 June 2010.
In the NT, the vast majority of the nucleic acid tests (NATs) for chlamydia (the standard diagnostic test for chlamydia) are funded through 3 fiscal systems. Tests requested at general practices, the private hospital and both Government and Aboriginal-controlled health clinics (remote and urban) are processed in private pathology laboratories and paid through the Medicare program administered by the Health Insurance Commission, Australia. Tests requested in prison clinics, specialist public sexual health clinics (Clinic 34s) and public hospitals are performed in the pathology laboratories of Royal Darwin Hospital (RDH) using funds from the NT health budget. Finally, tests performed in the Defence Force clinics are performed in 1 private pathology laboratory and paid for by the Defence Force. As the tests performed for the Defence Force only represented a small proportion of the total amount of chlamydia testing in the NT, they were not included in the analysis of this study.

Territory-wide data for the NATs for chlamydia were retrieved from the Medicare website using item numbers #69316, #69317 and #69319 (referred to as Medicare data henceforth). This 3-year study period was chosen because these item numbers for the NATs for chlamydia only came into effect from 1 May 2007 and there were no dedicated item numbers for the test in 2006. Chlamydia testing data paid through the NT health budget were retrieved from the Department of Pathology of RDH (referred to as “hospital data” henceforth). Data was also extracted from the NT Notifiable Disease System to determine the total number of chlamydia notifications in urban residents, and the number of these diagnosed by the Clinic 34s.

For the purpose of this study, only Darwin and Alice Springs urban areas were categorised as urban areas while the rest of the NT were categorised as remote areas. The authors examined the number of tests with breakdowns by sex, location and type of services providers, and financial year, including 2007/8, 2008/9 and 2009/10.

Ethics approval to conduct this study was obtained from the relevant local human research ethics committees.
Figure 2: The proportion of NATs for chlamydia performed by health care providers, NT, 2007/8 to 2009/10

Figure 3: The number of NATs for chlamydia by service provider and financial year, NT, 2007/8 to 2009/10

Figure 4: The proportion of NATs for chlamydia performed by sex and urban/remote split, NT, 2007/8 to 2009/10
Results

Over the 3 year period, there was a mild overall increasing trend in the number of tests performed in both data systems in both sexes except in the Medicare system for men in which a mild decreasing trend was noted (Figure 1). During the study period, 44.7% of all tests were performed by remote general practitioners (GPs) and health clinics, followed by urban GPs and health clinics (Figure 2). Specialist public sexual health clinics only accounted for just over 10% of the tests. Notably, public hospitals performed 12.7% of all tests.

The number of tests performed by remote GPs and health clinics remained at the same level from 2007/8 to 2008/9, but declined considerably in 2009/10 (Figure 3). There was an increasing trend in the number of tests performed by urban GPs and health clinics and specialist public sexual health, while the number remained at about the same level for public hospitals and prison clinics. Over 65% of the chlamydia tests were performed in females in both remote and urban based GPs and health clinics (Figure 4).

Clinics 34’s performed 20.4% (13397/65683) of the tests in urban areas, and diagnosed 40% (1351/3347) of the chlamydia notifications in urban areas during the study period.

Discussion

To the best of our knowledge, this is the first study in the NT to investigate the amount of chlamydia testing performed by various health care providers.

Significantly more tests were performed in females than in males in the Medicare data, which may explain the higher notification rates in females. This finding applied in both urban and remote areas. By contrast there was limited difference between sexes in hospital data. This may be because close to half of the tests in this dataset were performed in specialist public sexual health clinics, where all men attending are routinely tested. It remains unclear whether men are tested less frequently in the Medicare data because clinicians are less likely to offer them tests, or whether it reflects a lower health care attendance rate. Regardless of the reason, measures should be taken to increase testing of men by GPs and health clinics across the NT to achieve effective control of chlamydia.

Though servicing only one third of the population, remote GPs and health clinics performed almost half of the testing. This is expected as the prevalence of infection in remote areas is high and targeted opportunistic screening is recommended by the relevant clinical guidelines. However, further data on age specific testing rates, the proportion of individuals tested annually and the reason for testing are needed to fully understand current testing patterns. The decline in 2009/10 may be the result of the cancellation of the annual STI screen in Central Australia. Such information is essential in interpreting surveillance data as if there is a decrease in notification rate in this region in this period, the most likely reason should be decreased testing, rather than decreased prevalence.

Despite the increasing trend observed during the study period, the number of tests performed by urban GPs and health clinics as well as specialist public sexual health clinics only represent 35.8% of the total number of tests but they service about 2/3 of NT population. Further, a large proportion of these tests were performed at the Clinics 34s. This would have resulted in an even lower average number of chlamydia tests per urban-based GP. More information is required to analyse age specific testing rates but it appears that promoting chlamydia testing in targeted age groups, particularly among men, by urban-based clinicians and health care providers is required.

There are several limitations to this study. Firstly, it is not possible to exclude tests performed on people who were not NT residents. As there is considerable numbers of tourists from interstate and overseas visiting NT clinics each year (especially the specialist public sexual health clinics), there should be a small degree of overestimation in the number of tests performed for NT residents in this study. Secondly, the comprehensive testing data were only available for the last 3 financial years and this makes it impossible to conduct a robust trend analysis.
Thirdly, the limited variables available in the Medicare dataset preclude the analysis on location or ethnicity, both of which are important for epidemiological analysis.

Despite the limitations, the authors believe that the data used in this study was adequately comprehensive for investigating the amount and recent trend of testing with breakdown by health care providers. This study has also illustrated the utility of testing data in assisting in the interpretation of surveillance data and monitoring the epidemiology of common STIs. Their utility will be further illustrated in a separate study the authors are currently conducting using the same testing data to analyse the trends in notification, testing and positivity of chlamydia. As the majority of the data used in the study are readily available, this analysis should be repeated regularly to monitor the testing amount and trends.

References:

Leptospirosis is a zoonosis of global distribution. There are over 250 pathogenic serotypes of *Leptospira* bacteria, a spirochete organism occurring worldwide but more prevalent in tropical and subtropical regions. The natural reservoir is in the urogenital tract of wild and domestic animals. Animal hosts include rodents, dogs, deer, foxes, raccoons, possums, bats, cattle and reptiles including alligators, caiman and possibly crocodiles. Infected animals can be asymptomatic and shed *Leptospira* in infected urine and body tissues. *Leptospira* can remain viable for weeks or months in contaminated soil or water, particularly in tropical latitudes.

We report on a recent case of leptospirosis occurring in a 21 year old male working as a crocodile egg collector. The patient had been collecting crocodile eggs on 21/12/10. This involved wading through water and extracting eggs by hand from crocodile nests. He did not wear gloves and sustained minor cuts and abrasions to his hands and forearms in the course of this activity. On 2/1/11 the patient became unwell with fevers, rigors, joint pains, nausea, headache, conjunctival suffusion and a blanching rash on his back.

Initial investigations included serology for arboviruses, rickettsia, a full blood examination, liver function, electrolytes, C-reactive protein (CRP) and a urinary nucleic acid detection test for *Leptospira*. Apart from the CRP (41.3 mg/L), the initial investigations were normal. The patient was treated empirically with doxycycline 100mg 12-hourly for 7 days and his *Leptospira* serology was repeated 2 weeks later. His symptoms resolved and his repeat serology was positive for *L. Australis* (Titre 1:800).

Discussion

Several elements of this case demonstrate the sentinel features of leptospirosis. First, transmission is by skin contact (especially if abraded), inhalation or mucosal surface contact with soil, water or foliage contaminated with the urine of infected animals. Second, the average incubation period is 10 days with a range of 2 to 30 days (in this case it was 12 days). Third, the initial clinical presentation was consistent with the symptoms of leptospirosis, particularly conjunctival suffusion which is pathognomonic but observed in only 30% of patients. If unrecognised, leptospirosis has a reported case fatality rate of between <5% to 30%. Fourth, this case demonstrated the importance of repeating the serology to confirm the clinical diagnosis.

Crocodile handlers are an occupational group with generally a high awareness of leptospirosis. Nevertheless, enquiry regarding occupational or recreational exposure is important to make the diagnosis. Other groups at risk include (i) those working in the cultivation of rice, bananas, and sugarcane, (ii) persons working with cattle or recreational or subsistence hunters (e.g. duck, pig and turtle hunting) and (iii) recreational activities involving exposure to contaminated waters such as diving, swimming and fishing. Of significance for this 2011 wet season (La Niña event), large outbreaks are reported to occur during major flooding.

In terms of prevention, raising awareness and informing ‘at risk’ groups of preventive measures is important (Table 1), as is consideration of the disease by clinicians when seeing those at risk.

Table 1: Prevention of leptospirosis infection

<table>
<thead>
<tr>
<th>Prevention of leptospirosis infection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avoidance of contaminated waters and soils (includes drinking infected waters)</td>
</tr>
<tr>
<td>Wearing protective clothing such as boots, gloves and aprons</td>
</tr>
<tr>
<td>Covering abraded wounds with waterproof dressings</td>
</tr>
<tr>
<td>Control of rodents in human habitation or in occupational settings</td>
</tr>
<tr>
<td>Management of sugarcane fields through controlled pre-harvest burning</td>
</tr>
<tr>
<td>Immunization of farmed or domestic animals with the locally prevalent serovar</td>
</tr>
<tr>
<td>Chemoprophylaxis with doxycycline 200mg weekly is effective for high exposure activities</td>
</tr>
</tbody>
</table>
References

Media Release — TB rates low but vigilance still needed

24 March 2011 – World Tuberculosis Day

“On the move against Tuberculosis – transforming the fight towards elimination”

World Tuberculosis (TB) Day (Thursday 24 March) aims to raise awareness about the burden of TB and what can be done to prevent and control the disease. This marks the day in 1882 when Dr Robert Koch detected the cause of TB, the micro-organism, *Mycobacterium tuberculosis*.

“Detecting the TB organism is one of the first steps in diagnosing this disease and enables appropriate and curative treatment to begin,” said Centre for Disease Control Director and Head of TB Services, Dr Vicki Krause.

“Tuberculosis is a major global health problem. Each year worldwide, there are 9 million new TB cases and 2 million deaths from the disease.

“It is important to remember that TB can develop many years after someone has been in contact with an active case of TB. Also, the emergence of new drug resistant strains of TB is a serious health challenge.

“With so much TB in so many parts of the world, Australia remains at risk of cases occurring, with about 1200 cases being reported each year,” Dr Krause said.

“TB will continue to occur in Australia until there is better worldwide control. It is not surprising that TB rates here are highest in the overseas-born population, although higher rates are also seen in the Aboriginal population, especially in settings with high rates of chronic diseases and overcrowding.

“We have one of the lowest rates of TB and excellent TB control programs, but vigilance in screening and the ability to treat and follow up cases is absolutely vital.”

Dr Krause said the Northern Territory public health systems commitment to TB control includes effective refugee screening, contact tracing, preventive treatment for potential TB cases, observed treatment for active cases and high standard laboratory work on disease identification and drug testing.

“Over the past 3 years 99 cases of TB have been notified in the NT. Of these, 52 % were in people born overseas and 39 % were Aboriginal people.”

All people in the NT identified as having TB are given information about the disease, as well as confidential free clinical services and treatment. Contacts are followed up to allow for early diagnosis and are offered preventive treatment to minimise the risk of further transmission.

“TB is both a curable and preventable disease when it is detected and effectively treated.”

“This year’s global campaign looks at the fight against TB, saying that, “Every step we take should be a step towards TB elimination.”
What is driving salt-marsh mosquito peaks in Darwin: tides or rainfall?

Susan Jacups\(^1\), Peter Whelan\(^2\) and Jane Carter\(^2\)

\(^1\)School for Environmental Research, Institute of Advanced Studies, Charles Darwin University
\(^2\)Medical Entomology, CDC, Darwin

This is a modified version from the original publication in Mosquito Bites (Mosquito Control Association of Australia) January 2011

Abstract
The northern salt-marsh mosquito Aedes vigilax (Skuse) is an established vector for Ross River and Barmah Forest viruses and an aggressive biter and an appreciable pest species in the Northern Territory (NT). Many of Darwin’s northern suburbs are adjacent to the coastal wetland of Leanyer swamp, which has an extensive breeding habitat for Ae. vigilax. Medical Entomology (ME) of the NT Department of Health conducts adult mosquito surveillance and larval mosquito control for Ae. vigilax in this wetland. One trap located near the residential suburb of Karama consistently reports some of the highest numbers of Ae. vigilax of the 7 local swamp trap locations. ME wish to clarify why it should indicate the highest numbers and what environmental variable triggers these peaks. The trap site is close to the residential area, and the results are used to trigger public warnings of mosquito pest or potential disease risks. This paper seeks to identify the most important environmental variables associated with peaks of ≥ 500 Ae. vigilax/trap/night, to better indicate the reasons for the peaks and the section of the swamp that is the source of these peaks, to reduce public pest problems and disease risks.

The results of the analysis using models indicated that calendar months September - November had significantly more peaks than January and in addition to rain in these months were more associated with high monthly tides coinciding with rain. The Karama trap site is relatively close to the flood plains and wet lands associated with the Holmes Jungle section of the wetland, and the large tidal influenced swamps to the east outside the 5 km control zone.

This suggests larval control should be implemented with increased emphasis in rain flooded tidal influenced areas of the Holmes jungle section of Leanyer swamp after high tides with rain events coinciding s during the build-up months between September and November. This study supports applying statistical methods to existing control programs can enable insights into solutions without the need for additional field experiments and may have applications for other mosquito control programs in other areas.

Keywords: salt-marsh mosquito; traps; peaks

Background
The tropical region of northern Australia has a characteristic monsoonal climate with a ‘wet season’ from December to April and little or no rainfall during the ‘dry season’ months. Darwin, the capital of the Northern Territory (NT) receives an average annual rainfall of 1708 mm, with most of this falling in the wet season.\(^1\) The build-up season in Darwin occurs late in the dry season from September to November and features high humidity and occasional and random thunder storms.

Many of Darwin’s northern suburbs are adjacent to the extensive coastal reed and upper mangrove wetland of Leanyer swamp that has been recognized as an important larval habitat for Aedes vigilax (Skuse), the northern salt-marsh mosquito.\(^2,3\) There are a number of elements of the swamp including areas of constructed drains within the swamp, a former bomb target area with craters, a saline soil wet season flooded grassland, upper tidal mangrove areas and fresh, brackish and tidal influenced reed areas. The eggs of Ae. vigilax are laid in non-draining areas on salt affected damp soil or vegetation of relatively low height and density which allows the female mosquitoes access to the soil or plant base for oviposition.\(^4,5,6\) Hatching occurs when the eggs are inundated by either tides or rain.\(^6\)

Medical Entomology (ME) of the NT Department of Health conducts carbon dioxide baited adult mosquito trap surveillance and integrated mosquito control measures for Ae. vigilax breeding in the wetlands. This mosquito is an established vector for Ross River and Barmah Forest viruses.\(^7,8\) and is also an aggressive biter and an appreciable pest species.\(^9,10,11,12\) Aerial control in the Leanyer
swamp area primarily involves large-volume water based *Bacillus thuringiensis var. israelensis* (B.t.i.) mist applications applied from the air by helicopter. Peaks in *Ae. vigilax* numbers have been historically associated with public complaints from residential areas in Darwin, (Figures 1). The majority of telephoned complaints are made from residents within 500 m of the Leanyer Swamp edge, (Figure 2). Appreciable mosquito peaks can occur each year, particularly from 1 trap location on the edge the residential suburb of Karama that consistently indicates some of the highest numbers of *Ae. vigilax* in the 7 swamp trap locations. The reasons for these peaks and at this location have always perplexed staff at the ME unit. The trap is not the closest to the swamp boundary or to the most extensive breeding sites, and insight is required as to why and when it indicates the highest numbers, and what environmental variable triggers these peaks. This trap site is important as it is closest to the residential area and the results are used to trigger public warnings of mosquito pest or potential disease risks.

Larval control is carried out routinely after high tide or rain events and there has been no discernable pattern of preceding tides or rains to elucidate the primary cause of the *Ae. vigilax* peaks. Clarification of the cause of the peaks would allow prioritisation for timing and location for aerial larval control. We therefore sought to identify what might be the most important environmental variables associated with peaks of ≥ 500 *Ae. vigilax*/trap/night that might aid predictions. Improved prediction of peaks of aggressive biting mosquitoes in residential areas could assist early control intervention, timely media warnings and thereby possibly reduce public pest or potential disease risks. Early prediction of peaks could assist planning of future mosquito surveys, control efforts and hence maximise the efficiency of the unit.

Methods

Data

All female *Ae. vigilax* mosquitoes collected from overnight encephalitis virus surveillance (EVS) CO2 baited-light traps trapped weekly at 1 location (Karama trap) between July 1998 to June 2009 were included (Table 2). Mosquito identifications were preformed by ME in Darwin, with subsamples of 300 mosquitoes identified to species level, after which the total was estimated by weight. Weekly counts of *Ae. vigilax* were analysed for the study period (419 weeks). Daily rainfall was provided by the Australian Bureau of Meteorology (BOM) for the study period, from rain gauges located at: Karama, Leanyer, CSIRO Berrimah, Thorak cemetery, Shoal Bay Defence Base, and Royal Darwin Hospital, defined as ‘northern suburbs’ for this study. Daily tide data were provided by BOM for Port Darwin for the study period. Aerial mosquito control operations conducted by ME were included in the analysis as dates and areas (ha) sprayed.

Statistics

We identified the maximum tide during the 9 - 13 day period prior to each EVS collection date. Similarly the highest rainfall event and the cumulative rainfall were calculated for each 9 - 13 day period prior to trap collection. Chi square tests were used to test for associations between a peak in *Ae. vigilax* mosquitoes ≥500 and calendar month or season. Wet season was defined as December-April, dry season as May-August and build-up season September-November. Larval control categories were determined by percentile, with 20 ha at the 75th centile, and 100 ha at the 90th centile.

Following this, logistic regression models were applied, to determine explanatory variables fitted to weekly peaks of female *Ae. vigilax* mosquitoes ≥500 per trap. This was modelled controlling for calendar month, year, meteorological variables and larval control efforts.

Results

Overnight trap peaks of ≥500 female *Ae. vigilax* mosquitoes only occurred in months January, August-December (Table 1 and 2). There was a statistical difference between when peaks ≥500 occurred by calendar month ($\chi^2 = 69.8$, $p<0.0001$).

There was no difference between maximum tide (9-13 days) preceding trap collection, and *Ae. vigilax* mosquito ≥500 events (T-test, $p=0.405$). When the data were combined into a model, the maximum tide during the preceding 9-13 days prior to adult mosquito trapping was positively associated with peaks (≥500) OR=1.1 however this was not statistically significant ($p=0.72$).
Larval controls had a significant inverse effect on mosquito peaks. These effects were statistically significant and strongest when ≥100 ha were sprayed, OR 0.25, p=0.046. Calendar months September to November had significantly more peaks than January, with a trend for significance (p=0.09) in December. November had the highest association with mosquito peaks OR 45.4, p<0.0001. Year was not statistically associated with mosquito peaks but retained in the model to control for yearly variation.

Discussion

Findings from this study indicate that ‘build-up season months’, rather than intuitive ‘wet season months’ were more associated with peaks in Ae. vigilax in the Karama trap. Peaks mostly occurred in November with an increased risk OR of 45 associated with November versus January. Unseasonal rainfall during the build-up (September-November) rather than wet season months (December- April) was associated with peaks of Ae. vigilax over 500 in the Karama trap. These findings are supported by other published findings that Ae. vigilax larval densities are highest between October and December each year.2,3,17

Table 1: Peaks of Ae. vigilax in Karama trap, by calendar month

<table>
<thead>
<tr>
<th>Month</th>
<th><500</th>
<th>Ae vigilax peaks ≥500</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan</td>
<td>37</td>
<td>1</td>
<td>38</td>
</tr>
<tr>
<td>Feb</td>
<td>20</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>Mar</td>
<td>19</td>
<td>0</td>
<td>19</td>
</tr>
<tr>
<td>Apr</td>
<td>29</td>
<td>0</td>
<td>29</td>
</tr>
<tr>
<td>May</td>
<td>31</td>
<td>0</td>
<td>31</td>
</tr>
<tr>
<td>Jun</td>
<td>29</td>
<td>0</td>
<td>29</td>
</tr>
<tr>
<td>Jul</td>
<td>33</td>
<td>0</td>
<td>33</td>
</tr>
<tr>
<td>Aug</td>
<td>39</td>
<td>1</td>
<td>40</td>
</tr>
<tr>
<td>Sep</td>
<td>36</td>
<td>5</td>
<td>41</td>
</tr>
<tr>
<td>Oct</td>
<td>40</td>
<td>7</td>
<td>47</td>
</tr>
<tr>
<td>Nov</td>
<td>28</td>
<td>17</td>
<td>45</td>
</tr>
<tr>
<td>Dec</td>
<td>41</td>
<td>6</td>
<td>47</td>
</tr>
<tr>
<td>Total</td>
<td>382</td>
<td>37</td>
<td>419</td>
</tr>
</tbody>
</table>

Appreciable rain in Darwin usually commences in December with heavy rains in the months following. However, in some years, light to heavy rains commence earlier. Unlike tides, with clear demarcation lines, (Figure 4) rainfall is variable in intensity and less predictable, even
between suburbs adjacent to each other. With higher build-up season rainfall, rain added pooling in both currently tidal flooded areas as well as in tidally influenced areas can create a greater area of potential mosquito breeding habitat. Furthermore, unlike tides, rainfall can occur unpredictably from location to location. This creates a moving target for ME larval control teams who conduct the bulk of their surveys and control efforts with the aid of helicopters over a broad landscape. Although aerial larvae control efforts are conducted following tide or rainfall events the results of this study suggest that control efforts presently in place are sometimes inadequate at reducing \textit{Ae. vigilax} number peaks. This study suggests that these peaks are associated with tide and rain events coinciding, rather than rain or tide events alone. This could be due to all larval habitats not being adequately treated because of the difficulty in locating all pooling after tide plus rain events or that the Karama trap routinely captures an influx of adults from outside the 5 km control radius area from the northern suburb boundary. From the mid dry season, increasing spring tides progressively inundate potential \textit{Ae. vigilax} breeding habitat, thus progressively increasing \textit{Ae. vigilax} productivity, with rain in November to December further increasing \textit{Ae. vigilax} breeding. After inundation or swamp areas by tides or rain, the water does not drain and mosquito breeding can occur in very high densities until the area is seasonally flooded. Thus, no more egg laying habitat is available and larval predation by fish is enabled.2,18

Findings from this study indicate that maximum tide height was not associated with mosquito peaks in the crude or adjusted analysis. In the adjusted analysis, although tide had an OR 1.1, this was not statistically significant after adjusting for larval control efforts, which are routinely applied after high tides. These results also indicate that aerial larval control in the 2 to 4 days after high tides using \textit{B.t.i.} is adequate at reducing peaks, but not always adequate at controlling larvae 2 to 4 days after rainfall when coupled with high tides. This is understandable as rain events cause breeding over a much wider area than the prescribed areas following tide-only events. Additionally the rain prevents the timely (within 6 days) draining of tidal flooded areas and extending flooding into areas above the current tidal reach by direct rain addition to

![Table 2, Weekly \textit{Aedes vigilax} counts from Karama EVS trap](image-url)
pools and the overflow of storm water run off. This expanded and less concentrated breeding is both harder to locate, especially at low concentrations, and harder to control over a much wider area in a limited time.

The Karama trap site is relatively close to the Holmes Jungle section of the swamp where these rain expanded areas of flooding can be very variable and more extensive (Figure 4), and thus is reasonably expected to better indicate the higher populations arising from rain and tide events together. In addition the Karama trap site is positioned in the lee of a hill among a relatively dense stand of eucalypts which would afford wind protection and increased harbourage for salt-marsh mosquitoes which would also lead to higher numbers in the trap.

To maximize the efficiency of adult salt-marsh mosquito control operations in Leanyer Swamp this study suggests aerial larval control should be implemented with increased coverage after rain or tide and rain events coinciding during the build-up months (September to November) on rain-flooded current tide and maximum tidal extremities, particularly in the Holmes Jungle section of the swamp. Whether this is the most cost effective measure needs further study.

This study reiterates the importance of applying statistical methods to service provider programs enabling insights into solutions without necessarily the need for additional field experiments. This method of evaluation may have applications for mosquito surveillance and control programs in other areas.

Acknowledgements

We would like to thank all Medical Entomology staff members who were involved in collecting the data for this paper over many years and Joseph McDonnell for statistical advice. Also the National Health and Medical Research Council (NHMRC) and Sydney Myer Foundation for PhD scholarship funding.

References

Northern Territory CDC Conference

Darwin

6-8 September 2011

Darwin Convention Centre

For information

Call Justine Glover 8922 7776

Email Justine.glover@nt.gov.au
On 18 January 2011 Queensland (Qld) Health requested 2 entomologists from the Northern Territory Department of Health (DoH) Medical Entomology (ME) section to provide support for vector control for the Brisbane flood relief operations between 20-26 January 2011. The area of operations for the ME staff was to be in the Ipswich area.

Thursday 20 January

The ME Advice and Vector Control Officer Allan Warchot and the Operations Manager Nina Kurucz attended a meeting in Darwin to organise the logistics of the trip with 2 DoH Environmental Health Officers (EHO), who were also part of the support operation requested by Qld Health. The 4 officers travelled to Brisbane on 20 January.

Friday 21 January

On Friday morning, the ME officers travelled to Ipswich, where they attended a meeting with the vector control organiser, Matthew Ryan, from the Ipswich City Council. There were 4 vector control officers from the Gold Coast City Council and 2 officers from the Redland Shire Council present.

The ME officers were informed that aerial surveys of Ipswich were carried out after the flood water receded, and that areas still containing flood water were tentatively identified, and needed to be surveyed for mosquito breeding. In addition, each of the 4 vector control groups were assigned to designated areas for vector surveillance and control. ME officers were assigned to the worst flood affected areas for assessment.

Vector survey and control operations 21 - 24 January 2011

Between 21- 24 January ME officers carried out mosquito survey and control operations in the following areas of Ipswich:

- Moores Pocket
- Tivoli
- Goodna
- Amberley
- Redbank
- Bundamba

- Moggill
- Yamanto
- Purga and
- Riverview.

During the survey and control operations, it was observed that the flood water had already largely receded, and that only small areas in local public parks and sport ovals required mosquito control. Mosquito species found were *Culex annulirostris* and *Culex quinquefasciatus* including 1st to 4th larval instars and pupae and control was carried out using methoprene pellets and briquettes. A constructed wetland with stagnant water in Goodna was one of the largest and most productive mosquito breeding sites located during the surveys.

On 22 January, ME officers inspected the sewage treatment plants in Tivoli, Bundamba and Goodna. No sewage overflow or mosquito breeding was found at the plants in Tivoli or Bundamba. In Tivoli, due to a sewage pump failure, sewage was overflowing into a creek line. Areas were treated for mosquito breeding in this area near the sports oval and the temporary dump. The Tivoli sewage overflow pond was found to be in a condition requiring attention, and was breeding low numbers of mosquitoes. The findings were reported to the Ipswich Council.

Figure 1. Tivoli. Grassy ponding at dog training facility off Tantivy Rd. High Cx. annulirostris and Cx. quinquefasciatus breeding. Site treated with methoprene 150 day briquettes.
On 23 and 24 January, the ME officers inspected areas that were identified as potential mosquito breeding areas during an aerial survey. During the ground survey, however, the only areas found to hold water were quarries, dams and cut off pools along the Brisbane River, which contained biological control agents, such as fish. No mosquito control was required in those areas.

ME officers were advised that the military would survey the floodplain areas around the Amberley base located to the west of Ipswich town. ME officers inspected areas close to the military base along the Cunningham Highway. The topography was sufficient to prevent major residual water pooling, which was the general observation in the Ipswich locality.

Tuesday 25 January

On Tuesday morning, ME Officers advised the Ipswich Council vector control coordinator, that mosquito breeding was minimal, and that all major areas were attended to. ME officers also met with the part-time local Ipswich vector control officer to discuss the setting of routine CO2 baited EVS surveillance traps, to determine the number of mosquitoes present following the flood, and to get baseline information on seasonal mosquito numbers in the Ipswich area. The need for mosquito traps to be set in response to mosquito complaints was also discussed, in addition to the findings from the mosquito survey and control operations carried out by ME between 21 and 24 January. As a result of the floods, the Ipswich Council received a new position for vector control, while previously there was no dedicated position.

ME and EH Officers travelled back to Brisbane on Tuesday afternoon, and were invited to a meeting with the Qld Health Officer, who requested the NT support to provide relevant feedback in regards to the operations carried out in Ipswich. ME provided the following feedback:

- Overall operations were well organised and adequate support was provided by Qld Health and the Ipswich Council.
- Mosquito survey and control operations should have been carried out earlier (2 to 4 days after the flood peak) to prevent adult mosquitoes from emerging.
- For aerial surveillance for potential mosquito breeding sites, a vector control officer should have been present to determine the likelihood of mosquito breeding in the flooded areas.
- More methoprene pellets were required to carry out the control.

For the NT ME officers, it was beneficial to provide vector control support to the Ipswich Council by meeting the Qld vector control counterparts and discussing local vector control operations. In addition, it was a valuable experience to carry out vector survey and control in a post flood situation.

Subscribe to receive the *Northern Territory Disease Control Bulletin* by email

Save desk clutter and the environment by subscribing to receive the *Northern Territory Disease Control Bulletin* by email. To receive your copy electronically, please email your contact details to DaHye Baker at dahye.baker@nt.gov.au. A perfect option for forwarding onto colleagues!
Residents and visitors in the Northern Territory (NT) are being urged to protect themselves over the next 4 months against mosquitoes to prevent mosquito borne diseases including Murray Valley encephalitis virus (MVEV) Kunjin virus (KUNV), Ross River virus (RRV), and Barmah Forest virus (BFV) disease.

This warning is in response to recent seroconversions in NT sentinel chickens to KUNV in the Top End, and either or both MVEV and KUNV in Tennant Creek and the Katherine region in the combined NT Department of Health and Department of Resources Primary Industry laboratories program of sentinel chickens surveillance. Sentinel chickens in northwest WA are also showing activity of KUNV and possible MVEV, as well as sentinel chicken evidence showing widespread MVEV activity along the Murray River in Victoria and New South Wales (NSW) and in the Macquarie Marshes area in north central outback NSW. This warning is also prompted by historical data of sentinel chicken detections of MVEV in the NT starting in February in the Katherine, Barkly and the Alice regions. Recent rains in the NT, particularly in the Barkly, have caused an upsurge in flood water mosquito numbers which can be an indicator of impending mosquito borne disease transmission.

To avoid mosquito borne disease, residents are urged to use personal mosquito protection, and to avoid outdoor exposure around flooded areas or where mosquitoes are active, especially after sundown from now until the end of June.

More information about disease symptoms, mosquito breeding sites and personal protection measures is available on the NT Department of Health website at http://www.health.nt.gov.au/Medical_Entomology/index.aspx

The Northern Territory (NT) Government is proposing substantial reforms to alcohol policy in the NT. Details are available at http://www.alcoholplannt.com.au/

GPs, doctors, nurses and Aboriginal health workers will be directly affected by the Prevention of Alcohol-related Crime and Substance Misuse Act. The NT Department of Health (DoH) is currently consulting with the entire primary health care sector concerning the proposed reforms and how they will affect it.

Banning Alcohol and Treatment notices and Alcohol Misuse Interventions

A Banning Alcohol and Treatment (BAT) notice will prohibit a person from purchasing, possessing or consuming alcohol. A person might receive a BAT notice for drink-driving or alcohol-related violence offences as well as repeated episodes of being taken into police protective custody for being drunk. BATs may be for 3, 6 or 12 months. Enforcement will be via the requirement to show photo identification for all take-away alcohol purchases. ID will be checked against a register of banned drinkers and service refused if the person is banned.

A BAT may be reduced in duration if the person undergoes an ‘alcohol misuse intervention’ with a health care provider (HCP), including doctors, nurses, Aboriginal Health Workers, and specified others. Banned drinkers may present to a HCP seeking an alcohol misuse intervention.

While the concept of the alcohol misuse intervention is modelled on that of alcohol brief interventions, it is for the HCP to determine what type of assessment and intervention is appropriate. This may be brief or prolonged, involve repeat visits or also involve other health professionals. The HCP will judge whether and when it is appropriate to ‘sign off’ to reduce the length of the ban.
The Tribunal

HCPs may refer any person to the Tribunal if their substance misuse is detrimental to the safety, health or welfare of that person or of other people. Police officers and family members may also refer a person.

The Tribunal will consist of a legal practitioner, persons with expertise in the care of persons with substance misuse problems and persons representing community interests.

If the Tribunal feels the referral is appropriate, it can then arrange for the person to be assessed by a dedicated Tribunal clinician. Recommendations for treatment may be made. The Tribunal will not be able to impose compulsory treatment. Its powers will be limited to imposing a ban on the person purchasing and consuming alcohol and arranging for income management which can be lifted on completion of treatment.

The NT Alcohol and Other Drugs (AOD) Program of the NT DoH will be providing training, resources and support to assist health care providers in this role. The ‘Drink Less’ package provides a framework of methods and resources that GPs may find helpful for this process. Developed in New South Wales on a World Health Organisation model, it is being adapted for the NT. See http://www.sswahs.nsw.gov.au/sswahs/Drinkless/

The NT AOD program has a similar package “Grog: Making the change”. It is based on the same principles but has been developed for the NT Aboriginal health sector.

For further information contact Dr Steven Skov (89228513) or Paul Turner (89228430).

Alcohol Misuse Interventions in NT Primary Health Care: why and why now?

Steven Skov, CDC, Darwin

The Northern Territory’s (NT) drinking problem is large and affects the whole society. Per capita consumption of alcohol is 40%-50% higher than the rest of Australia, 17% of Territorians drink at risky or high risk levels for long term harm compared to 10% nationally and the NT’s alcohol attributable death rate is 3.5 times the national rate (2 times higher in non-Aboriginal people). In 2004/05 1 in 8 of all deaths in the NT was due to alcohol consumption.1,2

In response, the NT Government is introducing alcohol reforms of which one aspect is to encourage and facilitate access to treatment. For people with more serious dependency, alcohol treatment services will be expanded. However, the majority of people with a drinking problem are not at the point of serious dependence. They can be helped, and their progression to more serious problems perhaps prevented, by their primary health care provider. Under the Government reforms, people who are banned from buying and consuming alcohol, may seek an “alcohol misuse intervention” from a health care provider.

The important role of primary health care providers in helping their patients with a drinking problem is well established.3 Alcohol brief interventions have a solid body of evidence4 showing they can:

- Double the likelihood of a person reducing their drinking
- Reduce the amount of alcohol drunk (up to 4 standard drinks per week)
- Reduce morbidity, health care utilisation and emergency department visits.

A broad range of types of intervention delivered either by doctors, nurses or alcohol workers can be effective. A brief assessment over a few minutes of the nature of the patient’s drinking can give a good guide to the type of help needed. Very brief, single session interventions can be appropriate for some patients while others may require an extended intervention of 3-5 sessions. Those with more serious dependence or at risk of alcohol withdrawal may need referral to a specialist treatment agency.5,6
Time constraints and the difficulty of introducing the sensitive issue of someone’s drinking into a consultation have been barriers to primary care providers engaging in brief interventions.5,6 However, under these reforms, patients will be specifically asking for help.

Several tools exist to assist primary care providers in this role. The World Health Organisation has a manual for primary care that has been widely used throughout the world. The ‘Drink Less’ program is a complete package specifically designed for the Australian general practice setting (see http://www.sswahs.nsw.gov.au/sswahs/Drinkless/). It includes information for GPs, screening questionnaires that reception staff can administer, visual aids and self help papers for patients. Similar tools have also been designed for Aboriginal people for example the IRIS screening tool (see http://www.health.qld.gov.au/atod/prevention/iris.asp) and ‘Grog: making the change’ a complete brief intervention package available from the NT Alcohol and Other Drugs Program.

Will the proposed reforms completely solve the NT’s alcohol problem? No, but they can help by reducing access to alcohol and bringing more people into contact with treatment. Will a brief intervention work for everyone? No, but they will work for some and might prevent progression to a more serious problem.

\textbf{References}

Have you had your 2011 seasonal influenza vaccine yet?

Seasonal influenza vaccine is recommended for everyone 6 months of age and older.

People who can receive the vaccine for FREE are:

- Anyone 65 years of age and over
- All Indigenous people 15 years of age and over
- All pregnant women (in any trimester)
- Anyone over 6 months of age with medical conditions that increase their risk of severe influenza*.
- People with medical conditions that increase their risk to severe influenza. Medical conditions include:
 - Cardiac disease
 - Chronic respiratory conditions
 - Chronic illnesses
 - Chronic neurological condition
 - People with impaired immunity and
 - Children aged 6 months to 10 years having long term aspirin therapy.

The vaccine is provided FREE for Department of Health and Department of Children & Families employees. See http://internal.health.nt.gov.au/divisions/hp/branches/cdc/immunisation/Pages/default.aspx for vaccination clinic times and appointment requirements.
Murray Valley encephalitis (MVE)

What is MVE?
Murray Valley encephalitis (MVE) is an uncommon but potentially fatal disease that occurs after being bitten by a mosquito carrying the MVE virus. It is the most serious mosquito-borne disease that occurs in the Northern Territory (NT).

How is MVE spread?
The MVE virus is spread by the bite of an infected mosquito (usually Culex annulirostris, also known as the common-banded mosquito). Only about 1 in 1000 who is bitten by an infected mosquito will become unwell with MVE.

Where does MVE usually occur?
Although MVE can occur throughout Australia, it is most common in northern Australia. The MVE virus is present from February to July in the Top End of the NT, north-west of Western Australia and inland North Queensland during most years, and can extend into the Barkly and Central Australia in wet years. Most cases are detected between March and May.

What are the symptoms?
Symptoms of MVE usually appear 5 to 28 days after being bitten by an infected mosquito. The early symptoms include headache, fever, nausea and vomiting, and muscle aches, which can progress to drowsiness, confusion, seizures or fits (especially in young children) and in severe cases delirium and coma.

Who is at risk?
People most at risk are babies, young children and newcomers to a region where MVE occurs.

How is it diagnosed?
A blood test is available to test for recent or past MVE infection.

What is the treatment?
There is no specific treatment or vaccine available for MVE. The treatment of severe MVE is supportive and often requires admission to an intensive care unit.

How can MVE be prevented?
The only protection from MVE is to avoid being bitten by mosquitoes. Everyone should take measures to avoid being bitten by mosquitoes, particularly those visiting and camping in or near swamp or river systems during the evening and night, and in rural areas near sites of relatively high mosquito activity.

Mosquito protection for young children and babies is absolutely essential.

Personal protective measures

- Stay indoors when mosquitoes are most active, from just before, until 2 hours after sunset.
- Wear loose, light-coloured clothing with long sleeves, long trousers and socks (mosquitoes can bite through tight-fitting clothes).
- Apply a protective repellent containing up to 20 percent diethyltoluamide (DEET) or picaridin to exposed areas of skin and reapply as directed by the manufacturer. Lotions and gels are more effective and last longer than sprays.
- Ensure flyscreens in houses or caravans are in good condition.
- If camping out sleep in a mosquito-proof tent or under a mosquito net. Repellents only protect against mosquito bites for up to four hours, not all night.

For more information contact your nearest Centre for Disease Control.
Darwin 8922 8044
Katherine 8973 9049
Alice Springs 8951 7540
Tennant Creek 8962 4259
Nhulunbuy 8987 0357
For more information on mosquitoes and virus ecology contact Centre for Disease Control, Medical Entomology on 8922 8901
NT NOTIFICATIONS OF DISEASES BY ONSET DATE & DISTRICTS
1 January—31 December 2010 & 2009

<table>
<thead>
<tr>
<th>Disease</th>
<th>Alice Springs</th>
<th>Barkly</th>
<th>Darwin</th>
<th>East Arnhem</th>
<th>Katherine</th>
<th>N T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute Post Strep Glomerulonephritis</td>
<td>4</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>Adverse Vaccine Reaction</td>
<td>12</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>37</td>
<td>31</td>
</tr>
<tr>
<td>Amoebiasis</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Arbovirus Not Otherwise Specified</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>Barmah Forest</td>
<td>5</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>Brucellosis</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Campylobacteriosis</td>
<td>36</td>
<td>57</td>
<td>6</td>
<td>10</td>
<td>109</td>
<td>128</td>
</tr>
<tr>
<td>Chickenpox</td>
<td>15</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td>46</td>
<td>48</td>
</tr>
<tr>
<td>Chlamydia</td>
<td>863</td>
<td>773</td>
<td>56</td>
<td>56</td>
<td>1276</td>
<td>947</td>
</tr>
<tr>
<td>Chlamydial conjunctivitis</td>
<td>13</td>
<td>11</td>
<td>5</td>
<td>13</td>
<td>16</td>
<td>10</td>
</tr>
<tr>
<td>Cryptosporidiosis</td>
<td>36</td>
<td>48</td>
<td>2</td>
<td>4</td>
<td>36</td>
<td>68</td>
</tr>
<tr>
<td>Dengue</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>55</td>
<td>39</td>
</tr>
<tr>
<td>Food/water borne disease</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gastro - related cases</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Gonococcal conjunctivitis</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gonococcal infection</td>
<td>1151</td>
<td>890</td>
<td>72</td>
<td>43</td>
<td>359</td>
<td>264</td>
</tr>
<tr>
<td>Hepatitis A</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Hepatitis B - chronic</td>
<td>66</td>
<td>26</td>
<td>11</td>
<td>5</td>
<td>33</td>
<td>45</td>
</tr>
<tr>
<td>Hepatitis B - new</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Hepatitis B - unspecified</td>
<td>47</td>
<td>53</td>
<td>3</td>
<td>9</td>
<td>92</td>
<td>80</td>
</tr>
<tr>
<td>Hepatitis C - new</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Hepatitis C - unspecified</td>
<td>40</td>
<td>27</td>
<td>5</td>
<td>3</td>
<td>140</td>
<td>121</td>
</tr>
<tr>
<td>H Influenza b</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>H Influenza non-b</td>
<td>7</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>HIV</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>18</td>
</tr>
<tr>
<td>HTLV1 asymptom/unspecified</td>
<td>76</td>
<td>44</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Influenza</td>
<td>11</td>
<td>617</td>
<td>5</td>
<td>61</td>
<td>308</td>
<td>961</td>
</tr>
<tr>
<td>Kunjin Virus</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Legionellosis</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Leprosy</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Leptospirosis</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Listeriosis</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Malaria</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>12</td>
</tr>
<tr>
<td>Measles</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Melioidosis</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>87</td>
<td>24</td>
</tr>
<tr>
<td>Meningococcal infection</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Mumps</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>MVE</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Non TB Mycobacteria</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Pertussis</td>
<td>241</td>
<td>24</td>
<td>5</td>
<td>10</td>
<td>87</td>
<td>166</td>
</tr>
<tr>
<td>Pneumococcal disease</td>
<td>37</td>
<td>46</td>
<td>3</td>
<td>6</td>
<td>18</td>
<td>28</td>
</tr>
<tr>
<td>Q Fever</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rheumatic Fever</td>
<td>12</td>
<td>23</td>
<td>1</td>
<td>0</td>
<td>18</td>
<td>9</td>
</tr>
<tr>
<td>Ross River Virus</td>
<td>33</td>
<td>56</td>
<td>3</td>
<td>26</td>
<td>264</td>
<td>295</td>
</tr>
<tr>
<td>Rotavirus</td>
<td>144</td>
<td>129</td>
<td>21</td>
<td>2</td>
<td>76</td>
<td>85</td>
</tr>
<tr>
<td>Salmonellosis</td>
<td>81</td>
<td>74</td>
<td>13</td>
<td>21</td>
<td>387</td>
<td>320</td>
</tr>
<tr>
<td>Shigellosis</td>
<td>28</td>
<td>54</td>
<td>6</td>
<td>7</td>
<td>27</td>
<td>16</td>
</tr>
<tr>
<td>STEC/VTEC</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Syphilis</td>
<td>52</td>
<td>46</td>
<td>4</td>
<td>2</td>
<td>50</td>
<td>59</td>
</tr>
<tr>
<td>Syphilis congenital</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Trichomoniasis</td>
<td>689</td>
<td>563</td>
<td>128</td>
<td>77</td>
<td>651</td>
<td>568</td>
</tr>
<tr>
<td>Tuberculosis</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>21</td>
<td>23</td>
</tr>
<tr>
<td>Typhoid</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Typhus</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Varicella unspecified</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Vibrio food poisoning</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Yersiniosis</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Zoster</td>
<td>31</td>
<td>25</td>
<td>7</td>
<td>6</td>
<td>78</td>
<td>68</td>
</tr>
<tr>
<td>Total</td>
<td>3,745</td>
<td>3,745</td>
<td>370</td>
<td>380</td>
<td>4,404</td>
<td>4,576</td>
</tr>
</tbody>
</table>

The Northern Territory Disease Control Bulletin Vol 18, No. 1 March 2011 31
Ratio of the number of notifications in 2010 to the mean 2005-2009

DECREASE

- Mumps
- Hepatitis A
- Acute Post Strep GN
- Q Fever
- Non TB Mycobacteria
- Meningococcal infection
- Leprosy
- Tuberculosis
- Campylobacteriosis
- Campylobacter
- Salmonellosis
- Barmah Forest
- Ross River Virus
- H Influenzae non-b
- Rotavirus
- Pneumococcal disease
- Cryptosporidiosis
- Influenza

INCREASE

- Chikungunya
- Chlamydia
- Gonococcal infection
- Trichomoniasis
- Syphilis
- HIV
- Hepatitis C - unspec
- HTLV1 asyptom/unspec
- Donovonosis
- Hepatitis B - new

Ratio of the number of notifications in 2010 to the mean 2005-2009: sexually transmitted diseases

DECREASE

- Donovanosis
- Hepatitis B - new
- Syphilis
- HIV
- Hepatitis C - unspec
- HTLV1 asyptom/unspec

INCREASE

- Chlamydia
- Trichomoniasis

Ratio (2010 cases to mean 2005-2009)
Comments on notifications P32

Meningococcal
There were only 3 cases of meningococcal disease notified in 2010. This is the lowest number since 1993 when 2 cases were notified and is less than half the 5 year mean of 8. Given that the majority of NT cases are usually type B, the vaccination program against type C which began in 2004 cannot fully explain this decrease. Interestingly, the fall has been observed nationally and may be due to other ecological determinants associated with the bacteria.

Campylobacter
Cases of campylobacter (173) were 32% lower than expected (5 year mean: 256) and this continues a downward trend since a peak of 289 in 2007. In the early 1990s however, annual cases were consistently over 300 and there were 415 cases in 1991. The trend might reflect improved food safety measures in industry – particular with chicken processing which is a recognised source of campylobacteriosis.

Salmonellosis
Notifications of salmonellosis have been on an upward trend since 2005 and this has been observed nationally. In 2010 there were 597 cases in the NT which is 28% more than the 5 year mean and 16% more than 2009. There was a general increase in the common serovars such as Virchow, Chester, Ball and Anatum without the presence of any major outbreaks.

Melioidosis
In the 2010 calendar year there were 106 notifications of melioidosis which was 3.5 times the 5 year mean. This increase has been well publicised and is partly explained by increased rainfall.

Dengue
There were 64 cases of dengue notified in 2010 which is 2.8 times the expected (5 year mean: 23). All apart from 1 case were imported (Vol 14 No 4 December 2010 p11 “The Northern Territory remains dengue mosquito free…” with 45% being acquired in Indonesia (with 14 of 29 Indonesian cases acquired in Bali) and 38% (24 cases) in East Timor. These numbers reflect the global increase in dengue cases reported over recent years and in particular in SE Asia.

Gonococcal infection
There were 1989 cases of gonococcal infection notified in 2010 which is 21% more than the 5 year mean and against the downward trend of recent years. This is likely to be due to the extra testing going on in remote communities as part of the STRIVE research project looking at sexual health service delivery.

Chlamydia
There were 2707 cases of chlamydial infection notified in 2010 which is 32% more than the 5 year mean and which continues the upward noticed nationally in recent years. As with gonococcal infections, it may be due to increased screening associated with the STRIVE project together with extra testing going on in primary care.

Chikungunya
Chikungunya is a disease caused by an alphavirus and transmitted by mosquitoes. A mosquito is an arthropod and when it transmits a virus this virus is called an ‘arthropod borne virus’ or ‘arbovirus’ for short. Chikungunya is notifiable in the NT under the category “Arbovirus not otherwise specified” and is becoming more common in SE Asia and other parts of the world as an emerging infectious disease. There were 10 cases of chikungunya notified in 2010, all in returned travellers. Of these, 7 were part of a cluster from Bali, 2 acquired disease in East Timor and 1 in Lombok. Prior to 2010 only 5 cases, again all acquired overseas, had ever been notified in the NT.

**
Immunisation coverage for children aged 12–<15 months at 31 December 2010

<table>
<thead>
<tr>
<th>Region</th>
<th>Number in District</th>
<th>% DTP</th>
<th>% Polio</th>
<th>% HIB</th>
<th>% Hep B</th>
<th>% Fully vaccinated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Darwin</td>
<td>272</td>
<td>90.8%</td>
<td>90.8%</td>
<td>90.4%</td>
<td>90.4%</td>
<td>90.4%</td>
</tr>
<tr>
<td>Winnellie PO Bag</td>
<td>97</td>
<td>93.8%</td>
<td>93.8%</td>
<td>93.8%</td>
<td>93.8%</td>
<td>93.8%</td>
</tr>
<tr>
<td>Palm/Rural</td>
<td>195</td>
<td>86.7%</td>
<td>86.7%</td>
<td>86.7%</td>
<td>86.7%</td>
<td>86.7%</td>
</tr>
<tr>
<td>Katherine</td>
<td>86</td>
<td>93.0%</td>
<td>93.0%</td>
<td>93.0%</td>
<td>93.0%</td>
<td>93.0%</td>
</tr>
<tr>
<td>Barkly</td>
<td>16</td>
<td>87.5%</td>
<td>87.5%</td>
<td>87.5%</td>
<td>87.5%</td>
<td>87.5%</td>
</tr>
<tr>
<td>Alice Springs</td>
<td>141</td>
<td>90.1%</td>
<td>90.1%</td>
<td>90.1%</td>
<td>90.1%</td>
<td>90.1%</td>
</tr>
<tr>
<td>Alice Springs PO Bag</td>
<td>59</td>
<td>86.4%</td>
<td>86.4%</td>
<td>86.4%</td>
<td>86.4%</td>
<td>86.4%</td>
</tr>
<tr>
<td>East Arnhem</td>
<td>62</td>
<td>90.3%</td>
<td>90.3%</td>
<td>88.7%</td>
<td>88.7%</td>
<td>88.7%</td>
</tr>
<tr>
<td>NT</td>
<td>928</td>
<td>90.0%</td>
<td>89.9%</td>
<td>89.7%</td>
<td>89.8%</td>
<td>89.7%</td>
</tr>
<tr>
<td>Indigenous</td>
<td>384</td>
<td>87.0%</td>
<td>87.0%</td>
<td>87.0%</td>
<td>87.0%</td>
<td>87.0%</td>
</tr>
<tr>
<td>Non-Indigenous</td>
<td>544</td>
<td>92.1%</td>
<td>91.9%</td>
<td>91.5%</td>
<td>91.7%</td>
<td>91.5%</td>
</tr>
<tr>
<td>Australia Indigenous</td>
<td>3,364</td>
<td>85.1%</td>
<td>85.1%</td>
<td>85.1%</td>
<td>85.1%</td>
<td>85.0%</td>
</tr>
<tr>
<td>Australia Non Indigenous</td>
<td>72,169</td>
<td>92.1%</td>
<td>92.1%</td>
<td>92.0%</td>
<td>91.8%</td>
<td>91.6%</td>
</tr>
<tr>
<td>Australia Total</td>
<td>75,533</td>
<td>91.8%</td>
<td>91.8%</td>
<td>91.6%</td>
<td>91.5%</td>
<td>91.4%</td>
</tr>
</tbody>
</table>

Immunisation coverage for children aged 24–<27 months at 31 December 2010

<table>
<thead>
<tr>
<th>Region</th>
<th>Number in District</th>
<th>% DTP</th>
<th>% Polio</th>
<th>% HIB</th>
<th>% Hep B</th>
<th>% MMR</th>
<th>% Fully vaccinated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Darwin</td>
<td>274</td>
<td>93.8%</td>
<td>93.8%</td>
<td>83.9%</td>
<td>92.7%</td>
<td>92.7%</td>
<td>81.8%</td>
</tr>
<tr>
<td>Winnellie PO Bag</td>
<td>96</td>
<td>97.9%</td>
<td>97.9%</td>
<td>90.6%</td>
<td>97.9%</td>
<td>96.9%</td>
<td>89.6%</td>
</tr>
<tr>
<td>Palm/Rural</td>
<td>242</td>
<td>95.0%</td>
<td>95.0%</td>
<td>82.2%</td>
<td>94.6%</td>
<td>93.4%</td>
<td>81.0%</td>
</tr>
<tr>
<td>Katherine</td>
<td>100</td>
<td>100.0%</td>
<td>100.0%</td>
<td>86.0%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>86.0%</td>
</tr>
<tr>
<td>Barkly</td>
<td>11</td>
<td>81.8%</td>
<td>81.8%</td>
<td>72.7%</td>
<td>81.8%</td>
<td>90.9%</td>
<td>72.7%</td>
</tr>
<tr>
<td>Alice Springs</td>
<td>122</td>
<td>97.5%</td>
<td>97.5%</td>
<td>77.9%</td>
<td>97.5%</td>
<td>95.9%</td>
<td>77.0%</td>
</tr>
<tr>
<td>Alice Springs PO Bag</td>
<td>61</td>
<td>100.0%</td>
<td>100.0%</td>
<td>90.2%</td>
<td>100.0%</td>
<td>98.4%</td>
<td>90.2%</td>
</tr>
<tr>
<td>East Arnhem</td>
<td>48</td>
<td>100.0%</td>
<td>100.0%</td>
<td>85.4%</td>
<td>100.0%</td>
<td>97.9%</td>
<td>83.3%</td>
</tr>
<tr>
<td>NT</td>
<td>954</td>
<td>96.2%</td>
<td>96.2%</td>
<td>84.0%</td>
<td>95.8%</td>
<td>95.1%</td>
<td>82.7%</td>
</tr>
<tr>
<td>Indigenous</td>
<td>385</td>
<td>96.6%</td>
<td>96.6%</td>
<td>82.1%</td>
<td>96.6%</td>
<td>96.4%</td>
<td>81.8%</td>
</tr>
<tr>
<td>Non-Indigenous</td>
<td>569</td>
<td>96.0%</td>
<td>96.0%</td>
<td>85.2%</td>
<td>95.3%</td>
<td>94.2%</td>
<td>83.3%</td>
</tr>
<tr>
<td>Australia Indigenous</td>
<td>3,444</td>
<td>94.7%</td>
<td>94.7%</td>
<td>92.1%</td>
<td>94.7%</td>
<td>94.5%</td>
<td>89.8%</td>
</tr>
<tr>
<td>Australia Non Indigenous</td>
<td>73,395</td>
<td>94.9%</td>
<td>94.9%</td>
<td>94.8%</td>
<td>94.4%</td>
<td>94.0%</td>
<td>92.6%</td>
</tr>
<tr>
<td>Australia Total</td>
<td>76,839</td>
<td>94.9%</td>
<td>94.9%</td>
<td>94.7%</td>
<td>94.4%</td>
<td>94.0%</td>
<td>92.4%</td>
</tr>
</tbody>
</table>

Immunisation coverage for children aged 60–<63 months at 31 December 2010

<table>
<thead>
<tr>
<th>Region</th>
<th>Number in District</th>
<th>% DTP</th>
<th>% Polio</th>
<th>% MMR</th>
<th>% Fully vaccinated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Darwin</td>
<td>257</td>
<td>82.1%</td>
<td>81.3%</td>
<td>80.5%</td>
<td>79.4%</td>
</tr>
<tr>
<td>Winnellie PO Bag</td>
<td>91</td>
<td>91.2%</td>
<td>91.2%</td>
<td>91.2%</td>
<td>91.2%</td>
</tr>
<tr>
<td>Palm/Rural</td>
<td>237</td>
<td>89.5%</td>
<td>89.5%</td>
<td>89.5%</td>
<td>90.3%</td>
</tr>
<tr>
<td>Katherine</td>
<td>89</td>
<td>87.6%</td>
<td>87.6%</td>
<td>87.6%</td>
<td>87.6%</td>
</tr>
<tr>
<td>Barkly</td>
<td>31</td>
<td>96.8%</td>
<td>96.8%</td>
<td>96.8%</td>
<td>96.8%</td>
</tr>
<tr>
<td>Alice Springs</td>
<td>119</td>
<td>85.7%</td>
<td>86.6%</td>
<td>84.9%</td>
<td>84.0%</td>
</tr>
<tr>
<td>Alice Springs PO Bag</td>
<td>50</td>
<td>92.0%</td>
<td>92.0%</td>
<td>94.0%</td>
<td>90.0%</td>
</tr>
<tr>
<td>East Arnhem</td>
<td>58</td>
<td>98.3%</td>
<td>98.3%</td>
<td>98.3%</td>
<td>98.3%</td>
</tr>
<tr>
<td>NT</td>
<td>932</td>
<td>87.9%</td>
<td>87.8%</td>
<td>87.7%</td>
<td>86.8%</td>
</tr>
<tr>
<td>Indigenous</td>
<td>800</td>
<td>84.8%</td>
<td>84.6%</td>
<td>85.0%</td>
<td>84.4%</td>
</tr>
<tr>
<td>Non-Indigenous</td>
<td>562</td>
<td>87.4%</td>
<td>87.2%</td>
<td>86.5%</td>
<td>85.8%</td>
</tr>
<tr>
<td>Australia Indigenous</td>
<td>3,069</td>
<td>85.8%</td>
<td>85.7%</td>
<td>86.4%</td>
<td>85.4%</td>
</tr>
<tr>
<td>Australia Non Indigenous</td>
<td>69,989</td>
<td>90.1%</td>
<td>90.0%</td>
<td>89.9%</td>
<td>89.5%</td>
</tr>
<tr>
<td>Australia Total</td>
<td>73,038</td>
<td>89.9%</td>
<td>89.8%</td>
<td>89.8%</td>
<td>89.4%</td>
</tr>
</tbody>
</table>
Immunisation coverage rates for NT children by regions based on Medicare address postcode as estimated by the Australian Childhood Immunisation Register are shown on page 34.

Background information to interpret coverage

Winnellie PO Bag is postcode 0822, which includes most Darwin Rural District communities, some East Arnhem District communities and some people who live in the Darwin ‘rural area’ who collect mail from the Virginia store or Bees Creek. Alice Springs PO Bag is postcode 0872, which includes Alice Springs District, Nganampa and Ngaanyatjarra communities.

The cohort of children assessed at 12 to <15 months of age on 31 Dec 2010 were born between 1 Jul 2009 and 30 Sep 2009 inclusive. To be considered fully vaccinated, these children must have received 3 valid doses of vaccines containing diphtheria, tetanus, pertussis, and poliomyelitis antigens, either 2 doses of PRP-OMP Hib or 3 doses of another Hib vaccine, and 2 doses of hepatitis B vaccine (not including the birth dose) (latest doses due at 6 months of age). All vaccinations must have been administered by 12 months of age.

The cohort of children assessed at 24 to <27 months of age on 31 Dec 2010 were born between 1 Jul 2008 and 30 Sep 2008 inclusive. To be considered fully vaccinated, these children must have received 3 valid doses of vaccines containing diphtheria, tetanus, pertussis, and poliomyelitis antigens, either 3 doses of PRP-OMP Hib or 4 doses of another Hib vaccine, and 2 or 3 doses of hepatitis B vaccine (not including the birth dose) and 1 dose of measles, mumps, rubella vaccine (latest doses due at 12 months of age). All vaccinations must have been administered by 24 months of age.

The cohort of children assessed at 60 to <63 months of age on 30 Jun 2010 were born between 1 Jul 2005 and 30 Sep 2005 inclusive. To be considered fully vaccinated, these children must have received 4 valid doses of vaccines containing diphtheria, tetanus, pertussis antigens, 4 doses of poliomyelitis vaccine and 2 valid doses of measles, mumps, rubella vaccine (latest doses due at 4 years of age). All vaccinations must have been administered by 60 months (5 years) of age.

Interpretation

Immunisation coverage in NT children overall was below the national average across all 3 cohorts. It is felt that this may be in part due to vaccination changes and therefore a change in methods used for calculation (see final paragraph).

Indigenous NT children had lower coverage than non-Indigenous NT children across all 3 cohorts.

Immunisation coverage in Indigenous children in the NT was higher across the 12 to <15 months and 60 to <63 months cohorts but lower in the 24 to <27 months cohort as compared to coverage for Indigenous children at the national level.

There is a reported dramatic decline in immunisation coverage for *Haemophilus influenzae B* (HiB) in the 24 to <27 month cohort. Immunisation coverage is 10.7% lower for NT children than for the Australian average. The reported rate for NT Indigenous children is 10% less than the Australian Indigenous rate and there is a 9.6% exists difference between NT non-Indigenous and their Australian counterparts.

There is a decrease in rates in all postcodes and regions.

It is postulated that the recorded coverage rate is not a true indicator of vaccines administered but is related to the manner in which this vaccine coverage has been calculated. The NT Immunisation Schedule changed on 1 Oct 2009 to incorporate the introduction of Infanrix Hexa and Hibrix. As a result of this vaccine change the assessment for HiB coverage by ACIR has been complicated in children who may have received PedvaxHIB plus 1 or more doses of the new vaccines. The recorded decline in HiB vaccine coverage is being investigated and reviewed by the NT Immunisation Register, NCIRS (National Centre for Immunisation Research) and ACIR. Any recalculated data will be published in the next Bulletin.
NT Malaria notifications October - December 2010

Merv Fairley, CDC, Darwin

There were 5 notifications of malaria received for the fourth quarter of 2010. The following table provides details about where the infection was thought to be acquired, the infecting agent and whether chemoprophylaxis was used.

<table>
<thead>
<tr>
<th>Number of cases</th>
<th>Origin of infection</th>
<th>Reason exposed</th>
<th>Agent</th>
<th>Chemoprophylaxis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Thailand</td>
<td>Holiday</td>
<td>P. vivax</td>
<td>No</td>
</tr>
<tr>
<td>1</td>
<td>West Papua</td>
<td>Resident</td>
<td>P. vivax</td>
<td>No</td>
</tr>
<tr>
<td>1</td>
<td>Mali</td>
<td>Work</td>
<td>P. falciparum</td>
<td>No</td>
</tr>
<tr>
<td>1</td>
<td>East Timor</td>
<td>Resident</td>
<td>P. falciparum</td>
<td>No</td>
</tr>
<tr>
<td>1</td>
<td>Ghana</td>
<td>Holiday</td>
<td>P. falciparum</td>
<td>No</td>
</tr>
</tbody>
</table>

Disease Control staff updates

Darwin

The redefined position now called Senior Branch Manager for CDC has been won by Lesley Scott.

Roberta Smith has joined SHBBV as the Administration Officer to Jamie Broadfoot and the team located at Block 4.

Karen Doyle has commenced as the Administrative Officer at Clinic 34 in Darwin.

Greta Enbom has joined the SHBBV Unit as the Indigenous Early Childhood Health Promotion Officer.

Susannah O’Brien commences as the BBV Policy Officer position in mid-March in Block 4.

Elizabeth Brown has left the Darwin urban team to commence further studies.

Shelly Williams is back at CDC for a short term to work on a surveillance project.

Jenine Gunn is acting OzFoodNet Epidemiologist while Michelle Harlock is on maternity leave.

Chris Nagy is Head of Immunisation for 6 months before Ros Webby returns from maternity leave. Jayne Porter, a Policy Officer and previous Nurse Manager at Palmerston Community Care Centre is replacing Chris as the Senior Immunisation Officer for this time period.

We farewell Matthew Parnaby who finished on 16 February and is off to Africa! He is taking leave to commence aid work in Uganda to set up a country-wide nutritional surveillance program. Marea Fittock will take on the coordinator role in the Rheumatic Heart Disease program.

Christine Chamberlain and Kay McGough were successful in being recruited to the Rheumatic Heart Disease Register coordinators positions for the next 18 months.

Paul Burgess, Medical Officer and FAFPHM Scholar has come from Menzies School of Health Research after completing his PhD to work in the TB Unit and CDC.

Padmasiri Eswara Aratchige, Medical Officer and FAFPHM Scholar has come via Sri Lanka, New Zealand, Sydney and Laos to work in the TB Unit and CDC.

Nor Hayati Shaharuddin, Infectious Disease Registrar from Malaysia has joined CDC as a Medical Officer in March for 4 months and will then work at RDH for 6 months.

Beatrice Akello-Zweck who has worked several years at RDH, has joined the TB Unit to work as a Public Health Nurse.
Farewell to Gemma Farmer, Executive Assistant to Dr Vicki Krause, who returns to study at CDU and welcome to Dahye Baker, previously employed in Health House who will take on the role. Gemma will still be seen around CDC as part-time Administration Officer to TB Unit.

Janelle Baker has returned from retirement to work as part-time administration officer to TB Unit.

Katherine

Carmel Whalley, Public Health Nurse is going on leave for a month from 3 March.

Danielle Green, Medical Officer, will be finishing at CDC in mid April 2011.

Vicki Gaffney, Public Health Nurse TB/Leprosy will be starting at CDC in April.

Alice Springs

Belinda Davis (N5) joined Alice Springs CDC as the team leader for the Remote Sexual Health team from Darwin Clinic 34 in December.

Wendy Mactaggart (N4) is taking ARL and LSL for 3-4 months.

Michelle Koerner (N4) and Dy Kelaart (N4) are each working for a few months in the Remote Sexual Health team. Michelle will cover Wendy Mactaggart’s long service leave, and Dy will fill a vacancy until further recruitment.

Carolyn Lloyd (N4) has joined the Trachoma team for a year with responsibility for Central Australia North.

Catherine Milne (AO6) has joined the trachoma team as the Project Officer for a few months.

Eva Sarr from the Centre for Sexual Health has commenced maternity leave.

Tennant Creek

Martin Cutter has joined Celina at CDC as a Public Health Nurse.

The NT Disease Control Bulletin Index can be found at:
THE NORTHERN TERRITORY DISEASE CONTROL BULLETIN
CUMULATIVE INDEX
Vol. 1 Nos. (1-10) to Vol. 18 No. 1 (Nov 1991 – March 2011)

‘About Giving Vaccines’ – An accredited course for vaccine providers
An evaluation of the first four years 8(4)
About Giving Vaccines. An accredited short course for vaccine providers 11(2)
Small quality project report – ‘About Giving Vaccines’ 6(1)

Acute rheumatic fever 2(5); 5(4); 8(2)
Acute post-streptococcal glomerulonephritis (see glomerulonephritis)
Acquired Immunodeficiency Syndrome (AIDS)
Acellular pertussis

Addendum to article on HTLV1 and Tuberculosis in Central Australian Aboriginal people (Bulletin 14 no 3, Sept 2007 pp 5-8) 15(1)
After the earthquake Nias, Indonesia. March 28- April 18 12(2)

Addendum to article on HTLV1 and Tuberculosis in Central Australian

Alcohol

Anaemia

An analysis of the impact of falls & falls prevention activities in the NT 5(1)
Antimicrobial resistance in health care settings 9(2)
Antiviral medication
CDNA position statement on the use of antiviral medication for influenza (Pandemic (H1N1) 2009)* 16(2)

Arbovirus infection
An imported case of Chikungunya in the NT and a summary of the ecology of the disease. 11(3)
Chikungunya (Fact Sheet). 11(3)
Reporting 3(1)
Update 2(7)
Potential in the Top End 3(1)
Australian Encephalitis 1(8,10); 2(4)
Outbreak in Central Australia 7(2)
Cluster of encephalitis and meningitis in children in the Top End 7(2)
Top End MVE cases 7(2)
Barmah Forest 1(4)
Summary 1991-1992 1(6)
Summary 1991-1994 2(2)
Ross River Virus 1(1,2,4,7,8); 2(1); 4(1)
Case reports 2(6)
Dengue Virus 1(7)
Case reports 2(5)
Kunjin virus disease encephalitis 17(4)
The NT remains dengue mosquito free 17(4)
Ashdown’s medium [letter] 5(2)

Atlas of Health-related Infrastructure in discrete Indigenous communities 9(2)

Avian Influenza contact information and updates 11(2)

Azithromycin therapy

Bacterial antigen detection kits 5(1)

Barcoo rot 2(5)
Barmah Forest virus 14(2)
Bats
East Arnhem 3(4)
Flying fox alert 7(2)
Lyssavirus (see lyssavirus)

Beele-induced blistering dermatitis 2(7)
Benzathine Penicillin G (BPC) 2(6); 13(2)
Beyond GAA to Healthy Under 5 Kids in the Bush 15(4)
Beyond the burns: effects of firework related injuries 16(3)

Bicillin AP 2(3)
Bicillin LA 6(3); 9(1); 13(2)

Bites and stings in the Top End and how to avoid them 12(3)

Breast cancer
Breast Cancer Month and Pink Ribbon Day 8(3)
BreastScreen NT 8(2)
Incidence following round one mammography screening (Dec 1994-1997) 6(4)
Investigation of the sudden increase in breast cancer deaths in the Northern Territory in 1999 9(3)

Campylobacter 1(6)
Canis familiaris: Fatal outcome following a 'dog bite' 9(2)

Cardiovascular disease
Treating lipids 4(1)
Cardiovascular risk and cholesterol reduction 4(3)
Aspirin 5(2)

Case finding and contact tracing - Fundamentals needed for good communicable disease control 9(2)

CDC-GP Strengthening the Links 13(4)

Central line infection 1(9)

Cervical cancer
Achievements in cervical cancer screening in the NT 8(3)
Cervical cancer vaccination - Human Papilloma Virus Vaccination Program launched 14(1)
Screening in the Northern Territory 7(4)
Using Human Papillomavirus testing to monitor effectiveness of treatment of high grade intra-epithelial abnormalities of the cervix 12(3)

Chickenpox (see varicella)

Chikungunga disease 10(1)

Child care
Ear project 4(4)
Exclusions 1(3); 2(4)
Factors affecting hepatitis A vaccination uptake among childcare workers in the NT 8(3)

Ascaris lumbricoides 2(4)
Potential for disease outbreaks 2(6)

Child Health—New Child Health Team! 11(1)

Chlamydia (see sexually transmitted diseases)

Cholera

Chronic Diseases Network 4(2); 5(2)

Ciguatera 1(1); 5(4),
Reporting of Ciguatera Food Poisoning 13(3)

Ciguatera (Fish Poisoning) - Fact sheet 15(4)

Climate change
Climate change 15(4)
Climate change: Why should health professionals care? 16(4)

Clinic 34
Clinic 34 - on the move 10(4)

Climate change: Why should health professionals care? 16(4)
Clinic 34 survey 2004 11(4)
Is it a good move? A review of Darwin Clinic 34’s attendance data and client profile in relation to relocation to the CBD 12(4)
Closing the gap
Closing the gap – targets for indicator diseases 15(4)
Closing the gap – the challenge 15(4)
COAD
Clinical management and continuity of care COAD project 4(4)
Recent guidelines and local initiatives 9(1)
Cockroach control in the NT 6(1)
Coeliac Disease—Diarrhoea—when it is non-infectious 11(3)
Cold chain 1(1); 2(7); 8(1); 8(2)
Community education
The invisible and unknown battle 7(4)
Congenital syphilis
Revised guidelines for the investigation and treatment in the Top End of the NT 5(4)
Congenital syphilis: revised protocol for management and re-establishment of follow-up register in the Darwin region 12(3)
Counter Disaster
Public Health Group – Region 1: Counter Disaster Plan (2007) 14(4)
Coxackievirus B 2(1)
Cryptosporidiosis
Alice Springs 2(6)
Cryptosporidiosis: will it happen this wet season? 9(4)
East Arnhem 6(4)
Darwin 8(1); 10(2)
Outbreak in Darwin 10(2)
Cryptosporidium: will it happen this wet season? 9(4)
Northern Territory is dengue virus and dengue fever free. Has been since the 1950s 12(2)
Dangers of drugs circulated as “enhancing sexual function” or “herbal viagra” 15(4)
Dengue
Dengue Fever 17(1)
Case reports 2(5)
Dengue mosquitos on Groote Eylandt—Fact sheet 13(4)
Dengue Mosquito eradicated on Groote Eylandt 15(2)
Dengue 3 in Cairns 4(4)
Groote Eyland remains dengue vector free 16(1)
Letter to the editor NT news 16(1)
Public health and interpretation of serology results 7(1)
Increase in Dengue Fever notifications in visitors to East Timor 7(1)
Information sheet 7(1)
Northern Territory is dengue virus and dengue fever free. Has been since the 1950s 12(2)
Notification reminder to clinicians 7(1)
Dengue fever in northern Australia—a bit of history 17(4)
Diabetes
Control and Complications Trial 3(2)
New diagnostic criteria and NT AusDiab results 8(1)
Diphtheria 1(4.5); 2(5)
Guidelines for the control of diphtheria in the NT 5(2)
Disaster management
After the earthquake Nias, Indonesia. March 28- April 18 12(2)
Cleaning up floodwater 14(1)
Disaster management 5(1)
Infection control and waste management at the Zainoel Abidin Hospital, Banda Aceh, April 2005 12(2)
Opening a hospital in Banda Aceh 12(3)
The Aceh response - a personal account 12(2)
Disease Control staff updates (each issue)
Donovanosis
Azithromycin trial 2(2)
Azithromycin in NW Queensland 3(2)
Drowning related deaths in the NT with alcohol involvement 16(4)
Drug resistance
Antimicrobial resistance in health care settings 9(2)
VRE or not VRE - "always ask twice... or thrice..." 9(2)
East Timor
A volunteer doctor in East Timor 15(2)
East Timor AusAID Mosquito Project 13(3)
Evacuees in Darwin, September 1999 6(3)
Evacuees in Darwin – 1999 7(2)
Measles outbreak amongst evacuees in Darwin, 1999 7(3)
NT assists with leprosy survey in Timor 16(1)
Echovirus type 30 meningitis 2(1)
Editorials
For A Case of Plasmodium Ovalle 12(4)
Gearing up to protect our children 14(2)
Effluent outfall (see Environmental Health)
Eileen Jones AM 11(3)
Enteric disease (see Outbreaks, Salmonella)
Barge Belly. A gastrointestinal illness outbreak on a barge at sea 11(3)
Campylobacter 1(6); 14(3)
Case investigation 1(6); 1(9); 2(7)
Considerations around an increase of Salmonella Mгуlanii notifications in the Top End 9(2)
Cryptosporidiosis 9(4); 10(2)
Enteric diseases in the NT 11(2) 11(3)
Gastroenteritis [brief report] 6(2); 10(2)
Gastroenteritis in Aged Care Facilities 14(3)
Gastroenteritis Outbreak at Workshop 13(3)
Gastroenteritis outbreak due to Staphylococcus aureus 10(3)
Gastroenteritis outbreak due to Salmonella 10(4)
An investigation of a cluster of Salmonella Oslo cases 14(3)
Northern Territory OzFoodNet Highlights for 2005 13(2)
NT OzFoodNet Highlights for 2003 11(1)
NT Quarterly report 10(2), 10(3); 10(4)
Outbreak of gastrointestinal illness at a remote mine site 12(1)
Outbreak of norovirus gastrointestinal illness at Robertson Barracks 13(2)
Rotavirus 2(2)
Summary 1991 15(5)
Salmonella Ball outbreak in the NT, May-June 2002 9(3)
Salmonella Paratyphi B var Java in a child and their pet turtle 14(3)
The Northern Territory OzFoodNet Site – A Summary of 2008 16(1)
What is environmental Salmonella? 12(4)
Hafnia alvei-a possible cause of gastroenteritis? 17(4)
Environmental Health
Environmental Health Officers, role of 1(10)
Environmental Health Program 2003/2004 11(3)
Faecal & Other Body Fluid Accident Policy: Action to be taken following contamination 11(2)
Food Bill 2003 11(1)
Guidelines for the Design, Operation, Management and Maintenance of Aquatic Facilities 13(2)
Hazardous Foods – Cooling and Reheating 13(2)
Information for food handlers 13(3)
Information on Naegleria fowleri 12(3)
Naegleria fowleri in the Darwin water supply 12(3)
Public health legislation update 12(2)
Salmonella species in Fresh Produce – an emerging food safety issue for the NT 14(3)
Signage of Effluent Outfall Dispersal Zones – Buffalo Creek and East Point, Darwin 15(1)
Standard Operating Procedure – for Environmental Health Response to Water Quality Failures 15(1)
Erythema infectiosum (Fifth disease) 10(2)
Eulogy to Dr Jan Bullen 13(4)
Eulogy to Ellen Kettle (1922-1999) 6(3)
Erratum: Dates, damned dates and statistics!! A final word on reporting dates, with apologies to Katherine CDC 9(3)
Evidence for a sharp decrease in gonococcal cultures and its implications for the surveillance of antimicrobial Sensitivity 16 (3)
Faecal & Other Body Fluid Accident Policy: Action to be taken following contamination 11(2)
Fact sheets
Australian Bat Lyssavirus 10 (4)
Campylobacteriosis 14(3)
Chickenpox and shingles (varicella and herpes zoster) - Fact sheet 15(3)
Chikungunya 11(3)
Chironex fleckeri (Box Jellyfish) 14(4)
Ciguatera (Fish Poisoning) 15(4)
Cleaning up floodwater 14(1)
Dengue 7(1)
Dengue mosquitos on Groote Eylandt 13(4)
Diphtheria 17(2)
Disease 10(3)
Donovanosis 11(4)
Fifth disease (Erythema infectiosum) 10(2)
Food Safety—Hazardous Foods – Cooling and Reheating 13(2)
Food safety tips for Christmas 13(4)
Hand Foot and Mouth
Hepatitis A. 12(4)
How National Immunisation Program Changes will affect NT childhood Vaccination Schedule, November 1, 2005. Information for providers 12(3)
Information for food handlers 13(3)
Legionella 14(2)
Leprosy 13(1)
Malaria 11(2)
Murray Valley Encephalitis 18 (1)
Non-healing ulcers Including those caused by non-tuberculose mycobacteria (NTM) 14(1)
Norovirus 13(2)
Pertussis (Whooping cough) 15(1)
Scabies 17(1)
Two-step Mantoux testing 10(2)
Trachoma 17(4)
Vaccine safety for adolescent girls 12(3)
Vibrio bacterial disease 13(3)
Fetal alcohol syndrome in Australia 7(3)
Gonorrhoea (see sexually transmitted disease)
Gonococcal conjunctivitis (see sexually transmitted disease)
Glomerulonephritis, post-streptococcal 2(3); 2(6); 4(2); 7(2); 8(2), 11(3), 12
Gastroenteritis (see enteric disease)
Food Bill 2003 11(1)
Guidelines
Letter to the Editor 11(2) 16(3) 17(3)
Faecal & Other Body Fluid Accident Policy: Action to be taken following
Congenital syphilis: revised protocol for management and re-establishment
Guidelines for the Design, Operation, Management and Maintenance of
Aquatic Facilities 13(2)
Health Skin Program. Guidelines for the Community Control of scabies, skin sores and crusted scabies in the Northern Territory 17(2)
Hepatitis A public health management 5(2)
Hepatitis B vaccination policy in the NT 4(4)
Hepatitis B public health management 5(2)
Interim NT Guidelines for the Management of Sexually Transmitted Infections in the Primary Health Care setting 13(1)
Management of male urethral discharge (pus from the penis) or dysuria (pain when passing urine) in the primary health care setting 12(2)
Meningococcal meningitis/septicaemia chemoprophylaxis 4(4)
Malaria Guidelines for Health Professionals in the Northern Territory 2007 14(1)
Malaria Protocol. Guidelines For Health Professionals in the Northern Territory – 4th ed June 2004 11(2)
NT disease control policies, protocols and guidelines list 7(3)
Revised CDC guidelines 7(1)
The 2008 revised antibiotic protocol for adult community-acquired pneumonia in the Top End of the Northern Territory 14(4)
Haemophilus influenzae type b
Carriage in Aboriginal infants 3(4) [letter]
Case reports 1(2); 6(2)
Epidemiology 1(9)
Evaluation of vaccine campaign 1(10); 2(4)
Incidence of invasive Hib disease in the NT 5(1)
Vaccination program 1(4,7,9)
Hand, foot and mouth disease 16(6)
Fact sheet 10(3)
Handwashing
No Germs on Me - Hand Washing Campaign 15(3)
Head lice 3(2) 17(3)
Hepatitis A
Factors affecting hepatitis A vaccination uptake among childcare workers in the NT 8(3)
Hepatitis-A Alert 12(4)
Hepatitis A. Fact sheet 12(4)
Hepatitis A Nearing elimination in the NT following immunisation of Indigenous children 17(3)
Hepatitis A outbreak in Central Australia 12(4)
Herbal viagra 15(4)
Human papilloma virus (see Sexually transmitted disease)
Outbreaks 1(7); 3(4); [brief report] 5(4); 6(2); 8(3)
Reminder 4(1)
Hepatitis B
Editorial 3(2) 17(3)
Hepatitis B screening among women birthing in Alice Springs Hospital, and immunisation of infants at risk 14(2)
Notifications 2(4)
Provision of free paediatric hepatitis B vaccine to GPs 4(1)
Public health management guidelines 5(2)
Retrospective audit of immunoglobulin and vaccine uptake in infants at risk of perinatal transmission of hepatitis B virus 13(1)
School Age Program, NT 6(2,3)
School Age Program, Operations North 5(2)
Vaccination and health care providers 5(2), 7(3)
Vaccination policy in the NT 4(4)
Vaccination program at Clinic 34, Darwin 6(1)
Vaccination program at Clinic 34, Darwin 6(1)
Vaccination schedule change 1(7)
Hepatitis C
An update on Hepatitis C in the NT 12(1)
An update on the hepatitis C landscape in the NT 11(2)
Case register 2(1)
Clinical aspects 1(10)
Community awareness campaign 4(3)
Editorial: Hepatitis C 11(2)
Enhanced surveillance 7(2)
Interferon 2(4)
Introducing hepatitis C enhanced surveillance in the Northern Territory 13(2)
Management 2(2)
Notification 1(5); 2(2)
NT prison population 6(1)
Perinatal transmission 1(6)
Support group 2(6,7)
Hepatitis E Case report 2(1)
Histamine fish poisoning (Scombroid) incident – Darwin 7(2)
HTLV-I
Addendum to article on HTLV1 and Tuberculosis in Central Australian
Aboriginal people (Bulletin 14 no 3, Sept 2007 pp 5-8) 15(1)
HTLV-1 infection and tuberculosis (TB) in Central Australian Aboriginal people 14(3)
Human immunodeficiency virus (HIV)
Aboriginal population 19(9)
Acquired Immunodeficiency Syndrome (AIDS) reporting 8(4)
Antenatal screening 1(8); 2(7)
HIV/AIDS guide for Kimberley health professionals [letter] 5(2)
HIV and AIDS in the NT (1995-2000) 8(4)
HIV and travel campaign 17(2)
HIV newly diagnosed infection in the NT 2003-2009
Indications for testing 3(1)
Non-occupational exposure prophylaxis-nPEP 10(2)
NT HIV/AIDS report 7(4)
Reporting 8(4)
Routine HIV screening: is it feasible for Australia? 14(1)
Sex in the city, Young Women’s HIV Awareness Campaign 9(4)
The Territory two step – enhancing detection of latent Mycobacterium
Tuberculosis in HIV clients 11(3)
Update on HIV and hepatitis C virus in the NT 5(1)
Human papilloma virus (see immunisation)
Immunisation (also see specific diseases)
9th Edition of The Australian Immunisation Handbook and 4th Edition of Myths and Realities have been officially launched! 15(1)
About Giving Vaccines. An accredited short course for vaccine providers 11(2)
Adult [review of article] 2(5)
Adult immunisation campaign 3(1)
Adult Immunisation Schedule July 2008 15(3)
An alert system is already in place! A further response to editorial on "Retrospective audit of immunoglobulin and vaccine uptake in infants at risk of perinatal transmission of hepatitis B virus" 13(2)
Attention all health care workers 7(3)
Australian Immunisation Handbook 8th edition 2003 10(3)
Adult immunisation - new initiatives for 1999 5(4)
BCG
BCG complications - Alice Springs 2(5)
BCG complications - a review 5(3)
BCG availability – new vaccine policy in the NT 7(4)
Review of BCGs given to babies born in Adelaide to women transferred from Alice Springs Hospital 14(1)
Bush trip with a ‘snag’ 6(3)
Changes to the NT Childhood Vaccination Schedule 5(3), 9(2), 15(3)
Change to northern territory childhood vaccination schedule 1 October 2009 16(3)
Childhood immunisation coverage and timeliness in the NT 16(2)
Childhood immunisation internet site 15(2)
Childhood immunisation uptake: Part 1 - Top End 4(1)
Childhood immunisation uptake: Part 2 - Central Australia 4(2)
Childhood Vaccination Schedule 2008 15(3)
Cold chain 1(7)
"Commendation for excellence" - Jenner award 4(1)
Coverage rates 1994 2(5)
Coverage of children 12-14 months in real time 4(4)
Coverage in Darwin Urban area 3(1)
Coverage in NT for two birth cohorts as of 30 June 2000 7(3)
Coverage - third quarter assessment to 30 Sept 1997 5(2)
Coverage – NT 8(4), 14(1); 14(2)
Coverage - Combined analysis of two ACIR cohorts of NT children aged 12-15 months 9(2)
Custom designed vaccine refrigerator trial 8(1)
Declaration of status 2(8)
Don’t give MMR or Pedvax HIB booster doses too early 7(3)
Evaluation of vaccine campaign 2(4)
Effect of conjugate Hib vaccines on the incidence of invasive Hib disease in the NT 5(1)
Extension to indications for Human Papillomavirus vaccine (Gardisil ®) 17(4)
Flu shots for health staff 4(2); 5(4)
General practice 2(4)
Haemophilus influenzae type b 14(7,9,10); 2(4)
Hepatitis A 2(1,3,4); 3(2); 6(1,4); 12(2)
Hepatitis B 1(7)
Hepatitis B screening among women birthing in Alice Springs Hospital, and immunisation of infants at risk 14(2)
How National Immunisation Program Changes will affect NT childhood Vaccination Schedule 12(3)
How to apply for free acellular pertussis vaccine 4(1)
Human papilloma virus
Cervical cancer vaccination - Human Papilloma Virus Vaccination Program launched 14(1)
Update on the HPV program and National HPV register 15(3)
Influenza vaccination (2008) 15(1)
Flu shots for health staff 4(2); 5(4)
Influenza immunisation of doctors at the Royal Darwin Hospital, 2007: immunisation rate and factors contributing to uptake 14(4)
Influenza vaccination (2008) 15(1) 16(2)
Influenza vaccination poster—Make sure you are protected against the flu 16(2)
NT provides free seasonal influenza vaccine for all pregnant women 16(2)
Tennant Creek influenza vaccination program 12(2)
2011 Flu vaccine — gearing up for good coverage rates 17(4)
2011 Seasonal Influenza Vaccine Program 18 (1)
Investigation of Meningococcal Vaccine Failure 15(2)
Influenza 1(4); 2(3,6); 5(1)
Immunisation Audit Health Clinic A 14(1)
Imunise Australia 4(3)
Immunoglobulin 1(1)
Immunisation ‘database’ 3(1)
Immunisation titrds 6(3)
Immunisation update 6(4); 10(2); 10(3)
Immunisation coverage, NT 3(1), 8(4); 10(2); 11(2); 13(2); 13(3); 13(4); 14 (1); 14(2); 14(3)
Immunisation News 4(2)
Impact of 1996 campaign 4(1)
Japanese Encephalitis 1(6)
Measles 1(2,4); 2(4); 5(2); 7(1), 7(3)
Measles, mumps vaccination history in the Northern Territory 15(4)
Meningococcal C School Based Vaccination Program 2004 11(3)
Meningococcal vaccine
Mumps, Immunisation coverage 14(3)
Mumps in the NT 15(4)
New conjugate meningococcal C vaccine 9(1); 10(1)
New Commonwealth funding for hepatitis A vaccine for Indigenous children 12(2)
New Commonwealth funding for varicella vaccine and inactivated polio vaccine 12(1)
NT Adult and Special Groups Vaccination Schedule 7(1)
NT Standard Childhood Vaccination Schedule, 1/5/2000 7(1)
NT provides free seasonal influenza vaccine for all pregnant women 16(2)
Northern Territory Human Papillomavirus Vaccination Program update 15 (1)
November 2005 Immunisation schedule changes – What’s happening 12(4)
Ongoing NT funding for DTPa 4(4)
Paracetamol can it decrease the effect of vaccines? 16(4)
Pandemic (H1N1) 2009 influenza vaccination uptake 16(4)
Pertussis 1(7); 2(4); 4(4); 15(4)
Pneumococcal 2(2,8)
Review of adult pneumococcal vaccine database 9(4)
Conjugate pneumococcal vaccine 8(2)
Conjugate pneumococcal vaccine coverage 8(4); 10(2)
Feasibility study for the NT Pneumococcal Vaccine Trial 7(1)
What’s new for prevention of invasive pneumococcal disease? 8(1)
Universal pneumococcal vaccination program for 2005 11(4)
Polio 2(8), 9(2)
Pre-vaccination survey of RHG health care workers on attitudes and barriers to the new pandemic (H1N1) 2009 influenza vaccine 16(4)
Promotion activities in Alice Springs 4(1)
Provision of free paediatric hepatitis B vaccine to GPs 4(1)
Rabies immunoglobulin 15(4)
Rotavirus
Introducing Rotavirus Vaccine in the Northern Territory (NT) 14(1)
Rotavirus immunisation audit in a remote community 14(1)
An estimate of rotavirus vaccine efficacy following an outbreak of rotavirus gastroenteritis in Central Australia 15(1)
Rotavirus Vaccine introduced in the NT 13(3)
School Age Program, NT 6(2,3)
School Age Program, Operations North 5(2)
Immunosuppression

Informatics – it should be contagious 16(1)

Influenza

Infection control and waste management at the Zainoel Abidin Hospital, Indigenous health indicators

Prevention of opportunistic infections in immunosuppressed patients in the tropical Top End of the Northern Territory 11(1)

Indigenous Community Housing Survey (NT) 11(4)

Indigenous health indicators

Closing the gap – targets for indicator diseases 15(4)

Closing the gap – the challenge 15(4)

Infection control and waste management at the Zainoel Abidin Hospital, Banda Aceh, April 2005 12(2)

Informatics! – it should be contagious 16(1)

Influenza

A summary of influenza 2009 in the Northern Territory 17(1)

Australian management plan for pandemic influenza 12(2)

CDNA position statement on the use of antiviral medication for influenza (Pandemic (H1N1) 2009)* 16(2)

Flu shots for health staff 4(2); 5(4)

Hong Kong ‘bird flu’ 4(4)

Influenza immunisation of doctors at the Royal Darwin Hospital, 2007: immunisation rate and factors contributing to uptake 14(4)

Influenza report 14(3)

Influenza season 2007; bad, but not that bad 14(4)

Influenza Surveillance 2(6); 2(8); 3(2); 5(1); 5(2); 11(2); 12(1)

Influenza vaccination (2008) 15(1) 16(2)

More on Flu: News on the seasonal influenza vaccine 2010 17(1)

NT provides free seasonal influenza vaccine for all pregnant women 16(2)

Outbreaks 2(3,6); 3(4), 7(4)

Options for Control of Influenza III: Cairns 4-9 May 1996 [Conference report] 3(2)

Tennant Creek influenza vaccination program 12(2)

The early experience of pandemic (H1N1) 2009 influenza in the Northern Territory, Australia 16(2)

The epidemiology of laboratory confirmed influenza in the NT 2001-2007 15(2)

The epidemiology of the pandemic (H1N1) 2009 influenza in the Northern Territory, June-September 2009 16(3)

Summary of influenza 2009 in the Northern Territory 17(1)

Influenza vaccine in pregnant women and children under 5 years of age 17(3)

Injecting equipment

Disposal of used injecting equipment in the Northern Territory 14(3)

Injury Prevention and control

An analysis of public hospital admissions for water related injuries in the Northern Territory, Australia 2002-2006 14(2)

Water related injury hospitalisations in the Northern Territory 1999-2008 17(2)

An analysis of impact of falls & falls prevention activities in the NT 15(1)

Injury Prevention a National Plan for consultation and moving forward in the NT 11(3)

Injury Prevention and control; Brisbane, May 1999 [Conference report] 6(2)

Injury prevention and safety promotion in the NT: Safe Communities 11(4)

Firework related injuries 9(3), 15(3)

Firework-Related Injury Community Survey Report 2009 16(3)

Palmerston Safety Survey 2006: home safety, perceptions of community safety and experiences of injury 14(4)

Too many road crashes involving young drivers. Time for changes to our licensing systems and driver education strategies. 12(2)

Falls hospitalisation in the NT 1999-2008: the basis of need for a comprehensive falls prevention strategy 17(4)

Interferon

Hepatitis C 2(4)

Intestinal parasites

Pilot screening program 4(1)

Deworming protocols [editorial] 4(1)

Intussusception

Acute intussusception in infants and children in the Northern Territory. Report for the study period 1 June 2006 - 31 May 2008 15(2)

Intussusception in the Northern Territory. Report from a 3-year prospective surveillance system 13(4)

Iron deficiency in Aboriginal children in the NT 8(3)

Jellyfish 1(3); 2(7); 5(3), 7(4), 9(4)

Kava

Kava drinking 3(4)

Kava liver toxicity and kava ‘fits’ 9(4)

Laboratory

Reopening a hospital in Banda Aceh 12(3)

Latent Tuberculosis Infection (LTBI)

Preventive treatment and follow-up of contacts 2(5)

Two-step Mantoux testing 10(2)

Legionella Fact sheet 14(2)

Leishmaniasis: an overview in the context of an emerging pathogen in Top End wildlife 10(4)

Leprosy

Case reports 1(10); 3(1); 3(2)

ELISA test 3(1)

Elimination 6(2)

Indonesia 2(1)

Leprosy Fact sheet 13(1)

Leprosy in the Northern Territory (NT): A descriptive epidemiological study of all notified cases from 1991 to 2004 12(2)

Leprosy- Still Present in the NT 13(1)

NT assists with leprosy survey in Timor 16(1)

Risk of relapse of multibacillary leprosy after multi-drug therapy 8(2)

Update on control in the NT 6(2)

World leprosy Day 2010 16(4)

Updated guidelines for the control of leprosy in the NT 18(1)

Leptospirosis

A case of leptospirosis caused by Leptospira tarassovi acquired in the Northern Territory 11(2)

Editorial- Leptospirosis in the Northern Territory: Hunters beware! 11(3)

Leptospirosis in the Top End: an investigation into the occupational risk to crocodile handlers 11(3)

Leptospirosis Update 8(1)

Leptospirosis in dogs 8(1)

Leptospirosis: an occupational hazard for crocodile egg collectors 12(1)

Letter to the Editor

Enteric diseases in the NT Jan—Mar 2004 11(3)

Diespyros maritima 14(2)

Lyssavirus

Bat chat from East Arnhem 3(4)

Flying fox alert 7(2)

NT retrospective search for lyssavirus in humans 4(2)

Update 4(4)

Post exposure prophylaxis flowchart 6(3)

Prevention strategy update 4(4); 6(2), 7(2)

Australian Bat Lyssavirus – Fact sheet 10(4)

Australian Bat Lyssavirus in the NT 2000 – 2002: and overview of exposure and treatment 10(4)

Malaria

A Case of Plasmodium Ovalis 12(4)

An audit of malaria management in the Top End 10(3)

Case reports 1(4); 6(3)

Epidemiological data 5(3)

Imported malaria cases at the Northern Immigration Detention Facility, Berrimah, Northern Territory - Risk assessment and recommendations 13(4)

Malaria Guidelines for Health Professionals in the NT 2007 14(1)

Malaria Protocol. Guidelines For Health Professionals in the Northern Territory – 4th ed June 2004 11(2)

Public health response to an imported case 6(3)

Malaria Factsheet 11(2)

NT Notifications in each issue
The Northern Territory Disease Control Bulletin Vol 18, No. 1 March 2011

Mammography screening 6(4)

Medical Entomology

Thinking of walking the Kokoda Trail? Take note! - Malaria in Kokoda Trail walkers 14(1)

Mosquito control in Ilparpa Swamp – A big step forward 9(1)

Mosquito control at Hickey’s Lake, Katherine, NT 9(3)

Mosquito borne virus warning 5(2)

Mosquito-borne disease warning for the Top End of NT, 28 March 2006 13(2)

Interim report to the National Arbovirus and Malaria Advisory Committee

Medically important insects in the NT and how disasters affect them 10(1)

Mosquito-borne disease warning for the Top End of NT, 28 March 08 15(1)

Mosquito borne virus warning 5(2)

Mosquito control and the Katherine flood April 2006 13(2)

Mosquito control in Hickey’s Lake, Katherine, NT 9(3)

Mosquito control in Ilparpa Swamp – A big step forward 9(1)

Mosquito Control in Leanyer Swamp 14(2)

Mosquito investigations 1(4)

Mosquito vector control in the Northern Territory 14(2)

Northern Territory is dengue virus and dengue fever free. Has been since the 1950s 12(2)

NT Medical Entomologist Ipswich flood relief trip 18(1)

NT Mosquito borne disease alert for March to June 2011 18(1)

Personal mosquito protection while overseas 15(1)

Personal protection from mosquitoes & biting midges in the NT 11(2)

Role of 1(8)

Recommended interim water receptacle treatment for exotic mosquitoes on international foreign fishing vessels arriving in Australia 13(2)

Recommended water receptacle treatment for exotic mosquitoes on foreign fishing vessels arriving in Australia 12(2)

Rectification and control practices in a major salt marsh mosquito breeding site, Darwin, NT 9(4)

Red imported fire ant 8(1)

Red imported fire ant still threatens the NT 10(1)

Ross River virus and Barmah Forest virus disease cases in NT in 2006/2007 14(2)

Salt marsh mosquito larval control in the Leanyer coastal wetland, Northern Territory 17(1)

Screw worm 8(1)

Sentinel Chicken Program results in the Top End of the NT 14(2)

Severe skin reactions from the sap of NT tree Diospyros maritima Blume 14(1)

Timor-Leste AusAID Mosquito Project – an update 14(3)

Update on the Aedes aegypti mosquito eradication campaign in Tennant Creek, NT 11(2)

What is driving salt-marsh mosquito peaks in Darwin: tides or rainfall? 18(1)

Medical Yolgnu in 6 lessons 9(4)

Melioidosis 1(7); 5(4)

New conjugate meningococcal C vaccine 9(1)

Meningococcal disease – 2 cases in August 1997 4(3)

Guidelines for meningococcal meningitis/septicaemia chemoprophylaxis 4(4)

Meningococcal 1(4,5,6); 2(7); 4(3); 5(1) 11(3)

Echovirus type 30 2(1)

Coxsackievirus B 2(1)

Echovirus type 30 2(1)

Guidelines for meningococcal meningitis/septicaemia chemoprophylaxis 4(4)

Meningococcal 1(4,5,6); 2(7); 4(3); 5(1) 11(3)

Viral 1(6), 14(4)

Men’s health

Report on Men’s Health Week at Community X, Dec 1998 6(1)

Report on Men’s Health Screening at Community W, May 1999 6(3)

Report on Men’s Health Week at Community Z, June 1999 6(3)

Program at Gapsuwiyak 6(3)

Well men’s check 8(4)

Mosquitoes (see Medical Entomology)

MRSA

MRSA trends 2(8)

The emerging problem of community-associated MRSA; Necrotising pneumonia in a 19 month old Aboriginal boy 15(2)
Mumps in the NT 15(4)
Measles, mumps vaccination history in the Northern Territory 15(4)

Naegleria fowleri
Naegleria fowleri in the Darwin water supply 12(3)
Information on Naegleria fowleri 12(3)

Narco tic use and abuse in the NT [Conference report] 2(8)
National Immunisation Awards 9(4)

Needle and syringe programs in the NT – snapshots 7(2)
A return on investment 17(3)

Neonatal group B streptococcal disease 2(4)

Neurological disease in a cat 8(2)

Non-communicable diseases
Clinical management and continuity of care COAD project 4(4)
Update No. 1 Control and Complications Trial 3(2)
Update No. 2 Cardiovascular disease and treating lipids 4(1)
Update No. 3 Cardiovascular risk and cholesterol reduction 4(3)
Update No. 4 Hypertension control 5(1)
Update No. 5 Aspirin and cardiovascular disease 5(2)
Update No. 6 Prescribe moderate physical activity 6(2)
Update, Diabetes: New diagnostic criteria and NT AusDiab results 8(1)

Nontuberculous Mycobacteria
Non-healing ulcers. Including those caused by non-tuberculous mycobacteria (NTM) 14(1)
Nontuberculous Mycobacterium (guidelines) 10(1)

Norovirus
An outbreak of Norovirus associated with cooked oysters in Darwin 11(1)
Norovirus detected in oyster meat 11(3)
Outbreak of norovirus gastrointestinal illness at Robertson Barracks 13(2)

Notifiable Diseases
Amendments to schedule 11(4)
Changes to the NT Notifiable Diseases Act 1999 6(1)
Changes to the schedules of the Notifiable Diseases Act 13(1)
Comments on Notifications (each issue)
Convening of the Northern Territory Notifiable Diseases Committee 15(3)
Diseases newly added to NT list 6(4)
Erratum: Dates, dammed dates and statistics!! A final word on reporting dates, with apologies to Katherine CDC 9(3)
Guidelines for the management of people with infectious diseases who put others at risk of infection 12(3)

Graphs of selected notifiable diseases (each issue)
IT innovation in CDC—Development and implementation of the NT Notifiable Diseases System 11(4)
Notified cases of vaccine preventable diseases in the NT (each issue)
Notification form 7(1)
NT Malaria notifications (each issue)
NT Notifications of diseases by onset date & districts (each issue)
NT notifiable diseases 2002 – A summary 10(1)
Summary of selected notifiable diseases 2003-04 wet season 11(2)
Establishment of the Notifiable Diseases Committee 17(3)
Changes to the Notifiable Diseases Schedule 17(4)

Nutrition and infection in Aboriginal children 4(2)

Otitis media
A single dose treatment for suppurating ear disease in Aboriginal children 9(4)
Chronic supplicative otitis media (CSOM). Ear toilet has not gone far enough 10(4)
Community initiatives to reduce rates of CSOM 9(4)

Outbreak
An investigation into an outbreak of Salmonella Typhimurium phage Type 9 associated with a Darwin restaurant 15(3)
An investigation of a cluster of Salmonella Oslo cases 14(3)
An outbreak of Norovirus associated with cooked oysters in Darwin 11(1)
Barge Belly. A gastrointestinal illness outbreak on a barge at sea 11(3)
Gastroenteritis in Aged Care Facilities 14(3)
Gastroenteritis outbreak due to Staphylococcus aureus 10(3)

Outbreak of gastrointestinal illness at a remote mine site 12(1)
Salmonella Ball outbreak in the NT, May–June 2002 9(3)
Shigellosis (Outbreak in a tour group in Central Australia) 6(3)
Measles (Outbreak amongst East Timorese evacuees in Darwin, 1999) 7(3)
Mumps 14(3)

Norovirus detected in oyster meat 11(3)
Outbreak of gastroenteritis due to S Typhimurium 10(2)
Outbreak of norovirus gastrointestinal illness at Robertson Barracks 13(2)

Oysters 6(4)

Pertussis 1(7,8)
Case report 1(9)
Information about pertussis for GPs 15(2)
Information about pertussis for GPs 16(1)
Outbreak 2(4); 8(4)
The Epidemiology of Pertussis: A study in the Northern Territory in 2006 13(4)
Pertussis program for new parents 15(4)
Pertussis (Whooping cough) - Fact sheet 15(1)
Pertussis – what can CDC offer?? 12(1)
Vaccination coverage in the NT 8(4)

Pelvic inflammatory disease
(see sexually transmitted diseases)

Pediculosis humanus capitus 3(2)

Pneumococcal disease
(see also Immunisations)
Awareness campaign 2(8)
Conjugate pneumococcal vaccine 8(2)
Conjugate pneumococcal vaccine coverage 8(4)
Feasibility study for the NT Pneumococcal Vaccine Trial 7(1)
Pneumococcal disease 2(5)
Review of adult pneumococcal vaccine database 9(4)
Vaccine 2(2)
What’s new for prevention of invasive pneumococcal disease? 8(1)
Universal pneumococcal vaccination program for 2005 11(4)

Pneumonia (community-acquired)
Treatment 1(9); 5(4); 7(4); 14(4)

Policies, protocols and guidelines (CDC) 10(2)

Population Health initiatives
General Practice registrar position CDC 9(2)
The Population Health Education for Clinicians Project 8(2)
Population health education for clinicians - project update 9(2)

Postpolycystomy infection. Editorial comment 9(2)

Proliferation
Incarceration conference, PHA, April 2003 10(2)
TB Control in the Darwin Correctional Centre and the crew of boats carrying asylum seekers 10(3)

Protocols (see Guidelines)

Psittacosis 3(3)

Public health
Public Health Response. The Big Wet. Kunbarllanjnja (Oenpelli), Jabiru Outstations (Patonga & Mudginberri), Corroboree, Marrakai and Adelaide River Township Floods March 2007. 14(1)
Public health legislation update 12(2)
The Australian Medical Response in Kota Addu Pakistan following the flood crisis of 2010 17(4)

Q fever – first notified case of Q fever in the NT 9(1)

Rabies
Rabies detected in Bali dogs 15(4)
Rabies, Canine, Human-Indonesia: Bali, Alert 16(4)
Reduction in the number of doses of vaccine for rabies post-exposure prophylaxis 17(4)

Refugees
Guidelines for screening and management of infectious diseases in refugees from Sub-Saharan Africa—based on a single initial blood sample after arrival in the NT 11(4)
Refugee health in Australia – responding to the emerging needs 13(1)

Respiratory illness in 2 Darwin schools 4(3)
Reopening a hospital in Banda Aceh 12(3)

Rheumatic fever/Rheumatic heart disease
Evaluation of a rheumatic heart disease video as an educational tool in Aboriginal communities of Northern and Central Australia 12(1)
Evidence-based Review for ARF and RHD, an Australian first 13(3)
Letter to the Editor 15(1)
Menzies School of Health Research - projects 3(2)
New directions for the Rheumatic Heart Disease Program 12(3)
Program 4(4), 8(2); 10(1); 10(2)
Rheumatic fever and streptococcal pyoderma 10(2)
Rheumatic Fever: Licks the joints, bite the heart (and nibbles the brain...) 14(4)
Rheumatic Fever Video (DVD) launch at Oenpelli 12(4)
Rheumatic heart disease 2(5)
Should Acute Rheumatic Fever and Rheumatic Heart Disease be nationally notifiable? 11(3)
Standards of care in Aboriginal communities 2(5)
The Acute Rheumatic Fever/Rheumatic Heart Disease Program - an update 14(2)
The Top End rheumatic heart disease control program I. Report on program objectives 8(2)
The Top End rheumatic heart disease control program II. Rates of rheumatic heart disease and acute rheumatic fever 8(2)
Healthy school aged kids: Rheumatic heart disease (RHD) screening 17(4)
The NT Rheumatic Heart Disease Control Program: an update 18 (1)

Road safety
The time for Safer Roads in the NT has come: summary and outcomes of the NT Road Safety Task Force process 13(4)

Ross River Virus 1(1,2,4,7,8); 2(1), 4(1) 14(2)
Case reports 2(6)

Rotavirus 2(2), 8(3), 13(3), 15(1), 17(2)
Rubella 1(6)
Encephalitis 2(1)

Safety
An analysis of injury patterns following road traffic collisions in the Northern Territory 17(1)
Editorial 17(1)
Palmerston Safety Survey 2006: home safety, perceptions of community safety and experiences of injury 14(4)
Palmerston safe communities program finalist in awards for excellence 15(4)

Salmonella
An investigation of a cluster of Salmonella Oslo cases 14(3)
An investigation into an outbreak of Salmonella Typhimurium phage Type 9 associated with a Darwin restaurant 15(3)
Considerations around an increase of Salmonella Mungalui notifications in the Top End 9(2)
Gastroenteritis outbreak due to Salmonella 10 (4)
Outbreak linked to a marine turtle 5(4)
Outbreak of gastroenteritis due to S Typhimurium 10(2)
Salmonella Ball outbreak in the NT, May-June 2002 9(3)
Salmonella kennononi [brief report] 5(4)
Salmonella Paratyphi B var Java in a child and their pet turtle 14(3)
Salmonella species in Fresh Produce – an emerging food safety issue for the NT 14(3)
The 1996 national outbreak of Salmonella mbandaka 4(2)
What is environmental Salmonella? 12(4)

Severe Acute Respiratory Syndrome SARS 10(1); 10(2); 10(3); 11(2)

Scabies 1(10)
Community control of scabies and skin sores 4(3)
Endemic scabies in dogs and people are different 5(3)
Healthy Skin Program. Guidelines for the community control of scabies, skin sores and crusted scabies in the Northern Territory 17(2)
Management of patients in hospital with crusted scabies 4(2)
Treatment 2(3)
Screw worm fly

Tuberculosis
[ED letter] 3(4),
Ready for the ‘killer maggots’ 8(1)

Scrub typhus 13(3); 3(3)

Sentinel Chicken Program results in the Top End of the NT 14(2)
Sexually transmitted disease 1(6); 5(4)
A background report about the cessation fo the 2010 Central Australian annual sexual health screen 17(2)
Atrial fibrillation 2(2)
Bacterial vaginosis in women having a suction termination of pregnancy in Darwin 9(3)
Central Australian STI risk factor study 15(2)
Chlamydia
Chlamydia Rates Are Rising Sharply in the NT 13(2)
An investigation into the amount of Chlamydia testing performed by various health care providers in the NT 18 (1)
Congenital syphilis: Revised guidelines for the investigation and treatment in the Top End of the NT 5(4)
Congenital syphilis: revised protocol for management and re-establishment of follow-up register in the Darwin region 12(3)
Contact tracing 2(3)
Donovanosis eradication (National Elimination Project) 2001-2004 11(4)
Donovanosis (Fact sheet) 11(4)
Editorial 11(1)

Federal Budget initiatives 1998/99 5(2)
Gonorrhoea 19(10) [letter]
Gonococcal conjunctivitis 1(5); 4(3)
Gonorrhoea testing and antimicrobial resistance in the NT 7(1)
Guidelines for the control of gonococcal conjunctivitis 4(3)
Highlights of the 1995 NT AIDS/STD Program Report 3(1)

Human papilloma virus (HPV)
Using Human Papillomavirus testing to monitor effectiveness of treatment of high grade intra-epithelial abnormalities of the cervix 12(3)
Update on the HPV program and National HPV register 15(3)
Interim NT Guidelines for the Management of Sexually Transmitted Infections in the Primary Health Care setting 13(1)
Knowledge and practices by GPs in the Top End 8(3)
Management of male urethral discharge (pus from the penis) or dysuria (pain when passing urine) in the primary health care setting 12(2)
NT antibiotic resistance N gonorrhoeae sentinel surveillance sites 8(4)

N. gonorrhoeae Sentinel Site Surveillance – data analysis July 2001 to June 2002 11(1)

Needs Analysis - Youth Access to Sexual and Reproductive health services. A Snapshot 14(4)

Northern Territory report on HIV/AIDS, Hepatitis C and Selected Sexually Transmitted Infections 12(3)

Peer education 2(3)
Pelvic inflammatory disease (PID): Cessation of trial 6(4)
Pelvic inflammatory disease in the Top End 7(3)
Penicillin resistant gonorrhoea in the Darwin region 2001-2004 12(4)
Penicillin resistant Neisseria gonorrhoea in the Darwin region 11(2)
Penicillin resistant Neisseria gonorrhoea. Alert from far north Queensland 7(1)
Protocol for STD testing 4(1)
Protocol for treatment of uncomplicated genital chlamydia infection 2(2)
Put it on so we can get it on. A sexual health campaign targeting young people aged 15-19 in Darwin 11(2)

Report on STIs in the NT: A refresher course 9(1)
Screening 1(10); 8(1)
Sex in the city, Young Women’s HIV Awareness Campaign 9(4)
Sexually Transmitted Infections in Those Under 16 Years of Age in the Northern Territory 12(4)
Standard treatment protocol for STIs 4(1)

STIs in the NT: A refresher course 8(4)
STI screening conducted in the NT DHCS and community controlled health services in Central Australia in 2004 11(4)

Syphilis
Increasing notifications of infectious syphilis among men who have sex with men in Darwin urban area – An alarming recent trend and alert to GPs 14(4)
Syphilis re-treatment – are we overdoing it? 8(1)
Tampon study 2(8); 3(3)

Treatment 2(2)
Treating gonorrhoea in the Darwin region: safe to use amoxicillin and probenecid again for locally acquired infections 12(1)
The meaning of STI/BBV prevention through Web 2.0 applications 17(1)
The NT Sexual Health Advisory Group 14(2)
The NT Sexual Health Advisory Group – Two years on 16(1)
The review of Sexually Transmitted Infections (STI) and Blood Borne Virus (BBV) prevention and management in the NT 12(1)
Towards a sexual health strategy for remote communities in the NT 7(3)
Trends in notification of sexually transmitted infections from Alice Springs Hospital laboratory 13(1)
Trichomoniasis 2(6); 9(1)
Update on recommendations for treatment of Neisseria gonorrhoeae infection in the Darwin region 11(3)
Understanding antimicrobial susceptibility 8(4)
Urine screening 3(3)
Ven Troppo – The inaugural sexual health college conference – June 2000 7(4)

Shigellosis
Outbreak in a tour group in Central Australia 6(3)

Smoking
Community education 3(4)

Splenectomy
Compliance with post-splenectomy guidelines – An audit 12(4)

Staphylococcal disease
A cluster of invasive S. aureus disease in the Top End 4(2)
Gastroenteritis outbreak due to Staphylococcus aureus 10(3)

Streptococcal disease
Acute post-streptococcal glomerulonephritis 2(3); 8(2); 11(3) 15(3)
Control of acute post-streptococcal glomerulonephritis 4(2)
Outbreaks 2(6); 8(2)
Neonatal group B protocol 2(4)

Surveillance
Changes to NT Communicable Disease Surveillance System 2(1,4)
NT Hepatitis C enhanced surveillance 7(2)
Summary of selected notifiable diseases 2003-04 wet season 11(4)
Surveillance of meningococcal disease in the NT 5(1)
Syndromic surveillance of Emergency Department attendances in the Northern Territory 13(3)
Tampon Study 2(8); 3(3); 5(2)

Territory Day (see firework related injuries)

Tetanus Vaccination 6(3)

Tobacco Control 10(2)
The Aceh response - a personal account 12(2)
Too many road crashes involving young drivers. Time for changes to our licencing systems and driver education strategies. 12(2)

‘Total Recall’ Implementing at Jabiru Health Centre 7(1)

Trachoma
Azithromycin therapy 2(7); 14(4)
Control and treatment of active trachoma in the NT 4(1)
Guidelines for management of trachoma in the Northern Territory 15(2)
Trachoma: New problem or old dilemma? 9(2)
Treatment of trachoma in small babies 14(4)
Treatment program in the Katherine region 3(4)
Trachoma: new advances in treatment 14(4)
Trachoma - Report from the Working Group 9(3)
Trachoma update and an invitation to become a Trachoma Volunteer 14(2)

Training
General Practice registrars in CDC, Darwin 8(1)

Tuberculosis
Addendum to article on HTLV1 and Tuberculosis in Central Australian Aboriginal people (Bulletin 14 no 3, Sept 2007 pp 5-8) 15(1)
BCG complications - Alice Springs 2(5)
BCG complications - a review 3(3)
Community screening – a new threat promotes community action 9(1)
Guidelines for the Control of Tuberculosis in the Northern Territory 4th Edition, April 2008 15(1)
HTLV-1 infection and tuberculosis (TB) in Central Australian Aboriginal people 14(3)
Managing tuberculosis in Kirakira, Solomon Islands 11(2)

Mantoux school screening 1991 – 2000 9(1)
Mantoux – Two-step testing 10(2)
Migrant cases 1990-93 2(8)
Mini outbreak in Central Australia 3(3)
Mycobacterium bovis 10(2)
Multi-drug Resistant Tuberculosis in an Indonesian Fisherman 13(4)
Northern Territory school screening 2003-2005 13(4)
Preventive treatment and follow-up of contacts 2(5)
Percidritis 3(3)
Results of contact tracing following transmission of Mycobacterium tuberculosis in an urban itinerant Aboriginal population in Australia 12(1)
TB Control in the Darwin Correctional Centre and the crew of boats carrying asylum seekers 10(3)
TB in Two Katherine Region Communities 10(3)
TB Day media release 18 (1)

The Territory two step – enhancing detection of latent Mycobacterium Tuberculosis in HIV clients 11(3)
The utility of screening Royal Darwin Hospital health care workers for tuberculosis infection with a two-step Mantoux test 11(3)
Top End TB Outbreak 15(4)
Top End TB Outbreak Update – A Household Connection 16(1)
Top End TB Outbreak Update – A Household Connection. What’s been happening? 17(1)
Treatment completion for latent TB infection in Darwin 2005–2007 14(4)
Tuberculosis Guidelines 10(2)
Tuberculosis in the NT: Highlights from 2000 9(3)
Tuberculosis transmission within a single household – a report of a cluster of 11 cases 16(1)
Update on Top End community fighting TB 9(2)

Tsunami
The Aceh response - a personal account 12(2)
Infection control and waste management at the Zainoel Abidin Hospital, Banda Aceh, April 2005 12(2)

Typhoid
Typhoid 3(3)

Unauthorised fishermen
Assessing the Health of Unauthorised Fishermen apprehended off the Northern Territory Coast - Developing Procedures and Protocols 13(1)
Imported malaria cases at the Northern Immigration Detention Facility, Berrimah, Northern Territory - Risk assessment and recommendations 13(4)

Vibrio bacterial disease fact sheet 13(5)

Videos – Keeping Track of Good Health 6(2)

VRE or not VRE - “always ask twice... or thrice…” 9(2)

Varicella
Chickenpox and shingles (varicella and herpes zoster) - Fact sheet 15(3)
Hospital separations in the NT for varicella-zoster virus related illnesses, 1993-1997 6(4)
Usefulness of self-reported history in adult women in the Top End 6(4)
Varicella-zoster virus in pregnant women and babies 6(4)
Varicella vaccine workshop, Melbourne, Dec 1999 6(4)

Viral meningitis 16(6)

Water Quality (see Environmental Health)

Water related injuries – see injury prevention

Website – The what and how of the AIDS/STD website 9(3)

WHO Reports 3(2,4); 5(2)

Wicked problems: climate change and indigenous health 15(4)

Women's Cancer Prevention Program
Culturally and linguistically diverse women’s project 6(4)

World Youth Day 15(2)

Yellow fever [WHO update] 5(2)

Zidovudine (AZT)

Implications for antenatal HIV testing 2(6)

Zoonoses
Dogs 2(3)
see Leishmaniasis 10(4)