Maternal influenza vaccination: Protecting the mother and the infant
Rosalind Webby, CDC, Darwin

The Royal Australian and New Zealand College of Obstetricians and Australian Government Department of Health and Ageing strongly recommend routine vaccination of pregnant women against influenza. The 2012 influenza vaccine is available throughout the Northern Territory (NT) from the end of February and should be administered (free) to all pregnant women, regardless of their month of gestation. A postcard and poster promoting the importance of influenza vaccine in pregnant women is available from regional Centre for Disease Control (CDC) offices throughout the NT. Vaccine can be administered at antenatal clinics, community and remote healthcare centres and by most general practitioners.

Facts about influenza in pregnancy

Maternal protection

Pregnant women with influenza are at increased risk of hospitalisation and death. During the pandemics of 1918-19, 1957-58 and 2009-10 excess numbers of deaths and hospitalisations were reported in pregnant women as well as increased premature deliveries and stillbirths. Over a 13 year period (1990-2002) found that pregnant women without chronic medical conditions were 5 times more likely to be hospitalised while pregnant, compared to the influenza season prior to pregnancy.8
Infant protection

There is increasing evidence that pregnant women who are vaccinated during pregnancy with influenza vaccine protect their infant in the first 6 months of life from influenza and respiratory illness by placental transfer of maternal antibodies.9-11 Influenza vaccine given to pregnant women has been shown to be 91.5% effective in preventing hospitalisation of infants for influenza in the first 6 months of life.10 A recent study has also shown that babies born to women who have had the influenza vaccine had a higher mean birth weight.12

Maternal antibodies persist for up to 9 months. Infants can receive their own influenza vaccine from 6 months of age.

Maternity and medical staff protection

Healthcare workers may potentially transmit influenza to patients. Maternity staff should be vaccinated in an attempt to decrease the risk of transmission of influenza from themselves to the women and babies in their care.

Safety

Influenza vaccination during pregnancy has been shown to be safe and effective in all trimesters of pregnancy.13

Timing of vaccination

Current recommendations are that women can receive influenza vaccine at any trimester in pregnancy.14

References

4. Woolston WJ Conley DO. Epidemic pneumonia (Spanish influenza) in pregnancy effect on one hundred and one cases. JAMA 1919; 71 (23):1898-99.
10. Benowitz I Esposito DB Gracey KD Shapiro ED Vazquez M. Influenza vaccine given to pregnant women reduces hospitalisation due to influenza in their infants. CID. 2010; 51 (12):1355-1361.
Influenza vaccination during pregnancy should be routine: safety is well established and both maternal and infant benefit is now proven with only 5 vaccination doses estimated to prevent one case of serious maternal or infant respiratory illness.1

Preventing influenza during pregnancy is an essential part of antenatal care because pregnant women are at an increased risk of serious illness due to influenza.2 Excess morbidity and mortality for pregnant women infected with influenza compared with non-pregnant women of similar age who are infected with influenza has been noted during pandemics as long ago as 19183 but drew public and professional attention most recently during 2009.4,5

• The most effective strategy for preventing influenza in pregnant women is annual immunisation. Influenza vaccination is estimated to prevent 1 to 2 hospitalisations per 1000 women vaccinated during the second or third trimester.6

• Influenza vaccination is recommended for all pregnant women regardless of gestation.

• Inactivated influenza vaccine is usually available from February each year in the Southern Hemisphere. Live attenuated influenza vaccination has not been licensed in Australia.6

• Vaccination early in the season and regardless of gestational age is optimal, but unvaccinated pregnant women should be immunized at any time during influenza season as long as the vaccine supply lasts. Some maternal benefit is might accrue as early as 2 weeks after vaccination with research in pregnant women demonstrating seroconversion by 4 to 6 weeks after vaccination.7 Infection in the 3rd trimester of pregnancy appears to be the most dangerous for the pregnant woman.5

• No study to date has shown an adverse consequence of inactivated influenza vaccine in pregnant women or their offspring.8,9,10

• Active placental transfer of maternal antibodies makes influenza vaccine during pregnancy a highly effective measure to protect infants from influenza during the first 6 months of life.1,11,12

• The Royal Australian and New Zealand College of Obstetricians strongly endorses routine vaccination of pregnant women against influenza.

• The Royal Australian and New Zealand College of Obstetricians strongly endorse routine vaccination of obstetric and midwifery staff, both to protect these individuals as well as their families, closes contacts and patients.

References
7. Mak TK, Mangtani P, Leese J, Watson JM, Pfeifer D. Influenza vaccination in pregnancy:

Disclaimer

This College Statement is intended to provide general advice to Practitioners. The statement should never be relied on as a substitute for proper assessment with respect to the particular circumstances of each case and the needs of each patient.

The statement has been prepared having regard to general circumstances. It is the responsibility of each Practitioner to have regard to the particular circumstances of each case, and the application of this statement in each case. In particular, clinical management must always be responsive to the needs of the individual patient and the particular circumstances of each case.

This College statement has been prepared having regard to the information available at the time of its preparation, and each Practitioner must have regard to relevant information, research or material which may have been published or become available subsequently.

Whilst the College endeavours to ensure that College statements are accurate and current at the time of their preparation, it takes no responsibility for matters arising from changed circumstances or information or material that may have become available after the date of the statements.

Recent Pharmaceutical Benefits Advisory Committee recommendations regarding human papillomavirus vaccine (HPV)

Recently the Pharmaceutical Benefits Advisory Committee (PBAC) has recommended the extension of human papillomavirus vaccine (HPV), Gardasil® on the National Immunisation Program (NIP) to include ongoing administration to males approximately 12 to 13 years of age in a school-based program. A further recommendation has also included a catch-up for all males in the 2 year groups above the ongoing cohort, delivered over 2 years for Year 9 males, on the basis of acceptable cost-effectiveness compared with female-only vaccinationRef.

The recommendation from the PBAC is subject to approval by the Australian Government.

Reference

The 2012 influenza vaccine is now available. The 2012 seasonal influenza vaccine is identical to the 2011 and 2010 in composition. However, as the yearly flu vaccine is effective for 12 months (range 9 to 18 months) it is recommended that everyone receive the 2012 vaccine as early as possible.

Under the National Immunisation Program (NIP) influenza vaccine is free for the following groups:

- All non–Indigenous people 65 years and older;
- All Indigenous people 15 years and older;
- All pregnant women – (any trimester);
- All infants/people 6 months to 64 years with medical conditions* predisposing them to severe influenza, namely:
 - cardiac disease;
 - chronic respiratory conditions;
 - chronic illnesses requiring medical follow-up or hospitalisation in the preceding year;
 - chronic neurological conditions;
 - people with impaired immunity and
 - children aged 6 months to 10 years who receive long term aspirin therapy.

*Refer to the Australian Immunisation Handbook (pg 190-192)

Influenza vaccine for children

- CSL Biotherapies’ seasonal influenza vaccine Fluvax® is **NOT** registered for use in children under 5 years.
- There is also a ‘precaution’ for the use of Fluvax® in children aged 5 years to < 10 years.
- The recommendation in the NT is to use alternative influenza vaccines for children between 6 months and < 10 years of age such as Vaxigrip®, Aggripal®, Fluarix® and Influvac®.

All healthcare workers are encouraged to be vaccinated against influenza. Personal protective measures such as handwashing and covering the mouth and nose when sneezing and coughing are important but vaccination against influenza is the best way to protect staff and patients.

19 – 21 June 2012
Darwin Convention Centre

Immunisation: New Frontiers
http://www.phaa.net.au/13thImmunisationConference.php
Pneumovax 23® Revaccination Guidelines 2012

Summary

The Therapeutic Goods Administration (TGA) and Australian Technical Advisory Group on Immunisation (ATAGI) have released new guidelines for adult vaccination with polysaccharide pneumococcal vaccine Pneumovax 23® (23VPPV). This follows the temporary cessation of any second and subsequent doses which occurred in April 2011. The revaccination for Indigenous people remains unchanged from the previous schedule (see Adult Vaccination Schedule). The main change is that non-Indigenous adults 65 years and over, without chronic medical conditions and who do not smoke, require only a single dose of Pneumovax 23®. Non-Indigenous people 65 years and over with chronic medical conditions or who are smokers require a second dose of Pneumovax 23®, 5 years after the first dose.

Background

In March 2011 a cluster of 7 severe local injection site reactions to Pneumovax 23® (23vPPV) were reported to the Therapeutic Goods Administration (TGA), this event triggered the recall of the associated batch within several weeks.

In late April 2011 as a result of continuing reports of severe local reactions following administration of the vaccine, the TGA notified vaccine providers to withhold any second and subsequent doses of 23vPPV. During this period, 173 adverse events following immunisation reports were received nationally with only 4 from the Northern Territory (NT).

Pending the results of the investigation, all second and subsequent doses of Pneumovax 23® were suspended nationally.

Results of 'The Review'

The TGA has now determined that the adverse events were not a batch-related problem. The TGA considers that the increased numbers of reports of severe reactions were a result of the known high rates of local reactions, including severe injection site reactions, which occur more commonly after a repeat dose of Pneumovax 23®.

The Review found that Pneumovax 23® does provide a modest level of protection against invasive pneumococcal disease especially in older adults and those without underlying medical conditions and that the benefits of the first and subsequent doses of this vaccine need to be balanced with the risks of severe local reactions.

Local reactions can occur in up to one half of vaccine recipients and systemic reactions in up to one third although the frequency varied among different study populations and with age.

Systemic and local reactions, especially severe injection site reactions were more common following subsequent doses of Pneumovax 23®. The interval between doses of vaccine administered suggested that more reactions occurred if the doses were given between 1–4 years apart.

New recommendations

In late December 2011, following this Review, ATAGI issued an update on their recommendations for the revaccination of adults with Pneumovax 23®.

A dose of 23vPPV should be given to adults at 65 years of age. Every effort should be made to provide a dose to anyone aged >65 years who has not previously received a dose of 23vPPV. A second dose is no longer recommended for those without chronic medical conditions or those who are not smokers.

For non-Indigenous adults aged ≥65 years with chronic medical conditions or who are smokers, a second dose (a single revaccination) of 23vPPV should be given ≥5 years after the first dose. This is because these groups have an increased risk of invasive pneumococcal disease.

Recommendations for the use of 23vPPV in those <65 years, including for Indigenous adolescents and adults, are unchanged from the 9th edition of the Australian Immunisation Handbook.

The NT CARPA and Adult Vaccination Schedules have been changed again to reflect these recommendations and are available at http://health.nt.gov.au/Centre_for_Disease_Control/ImmunisationNT_Immunisation_Schedules/index.aspx

For further information about the ATAGI and TGA recommendations please see www.immunise.health.gov.au

Adult and Special Groups Vaccination Schedule

January 2012

<table>
<thead>
<tr>
<th>Disease</th>
<th>Who is eligible</th>
<th>Vaccine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Influenza</td>
<td>All Indigenous people 15 years and over</td>
<td>Fluvax®</td>
</tr>
<tr>
<td></td>
<td>All people 65 years and over</td>
<td>Vaxigrip®</td>
</tr>
<tr>
<td></td>
<td>All pregnant women (Any trimester)</td>
<td></td>
</tr>
<tr>
<td>Pneumococcal disease</td>
<td>People (over 6 months of age) with medical conditions predisposing them to severe influenza*</td>
<td>Fluvax® (10 years and over) Vaxigrip® (3 - <10 years) Vaxigrip Junior® (6 - 35 months) Pneumovax 23®</td>
</tr>
<tr>
<td></td>
<td>Indigenous people 15 years and over</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Non-Indigenous people 65 years and over</td>
<td></td>
</tr>
<tr>
<td>Pertussis</td>
<td>13 years (or Year 8)</td>
<td>Booster®</td>
</tr>
<tr>
<td></td>
<td>Parents and carers of infants under the age of 7 months¹</td>
<td></td>
</tr>
<tr>
<td>Tetanus and diphtheria</td>
<td>All people at 50 years</td>
<td>ADT® Booster¹</td>
</tr>
</tbody>
</table>

* Cardiac disease, chronic respiratory conditions, chronic illnesses requiring medical follow-up or hospitalisation in the preceding year, chronic neurological conditions, people with impaired immunity and children aged 6 months to 10 years who receive long-term aspirin therapy.

† All new mothers as soon as possible after delivery (vaccine is not given to women during pregnancy). All fathers and carers in the same household of an infant under the age of 7 months (the vaccine can be given to this group from the time the expectant mother has reached 26 weeks of pregnancy).

‡ All 50 year olds who have not received a tetanus containing vaccine in the previous 10 years should receive an ADT® Booster.

Booster® may be given in this age group but it should be provider or self funded.

Revaccination guidelines for Pneumovax23®

<table>
<thead>
<tr>
<th>Dose 1 First Adult dose</th>
<th>Dose 2 First revaccination</th>
<th>Dose 3 Second revaccination</th>
<th>Funded?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indigenous ≤ 15 years and < 50 years of age</td>
<td>5 years after dose 1</td>
<td>5 years after dose 2 or at 50 years of age whichever is later</td>
<td>Yes</td>
</tr>
<tr>
<td>Indigenous ≥ 50 years of age</td>
<td>5 years after dose 1</td>
<td>Not required</td>
<td>Yes</td>
</tr>
<tr>
<td>Non-Indigenous ≥ 65 years with no chronic medical conditions* or who are non-smokers</td>
<td>Not required</td>
<td>Not required</td>
<td>Yes</td>
</tr>
<tr>
<td>Non-Indigenous ≥ 65 years with chronic medical conditions* or who are tobacco smokers</td>
<td>5 years after dose 1</td>
<td>Not required</td>
<td>Yes</td>
</tr>
<tr>
<td>Non-Indigenous < 65 years with chronic medical conditions* or who are tobacco smokers</td>
<td>5 years after dose 1</td>
<td>5 years after dose 2 or at 65 years of age whichever is later</td>
<td>Self funded</td>
</tr>
<tr>
<td>Asplenic individuals either functional (including sickle cell disease) or anatomical</td>
<td>5 years after dose 1</td>
<td>Either 5 years after dose 2 or at 50 years (if Indigenous) or at 65 years of age (if non Indigenous) whichever is later</td>
<td>Discuss with GP or CDC</td>
</tr>
</tbody>
</table>

* HIV infection before the development of AIDS, acute nephrotic syndrome, multiple myeloma, lymphoma, Hodgkin’s disease, organ transplantation, chronic cardiac, renal or pulmonary disease, diabetes and alcohol related problems.

Refer to the 9th edition of "The Australian Immunisation Handbook" pg 75 – 102, for the guidelines for people with special vaccine requirements.

For more information visit www.immunise.health.gov.au or contact your nearest Centre for Disease Control (CDC)

Darwin - **8922 8044** • **Katherine** - **8973 9049** • **Barkly** - **8962 4259**

Alice Springs - **8951 6907** • **East Arnhem** - **8987 0357**

www.healthynt.nt.gov.au
Acute post-streptococcal glomerulonephritis community screen of large Top End community 21-29 February

Lesley Scott, CDC

Abstract

Acute post-streptococcal glomerulonephritis (APSGN) cases following infection with group A streptococcus (GAS) occur sporadically in the Northern Territory. There is an average of 26 cases per year (range 4-102). Outbreaks occur approximately every 5 years in Indigenous communities.

This report documents the public health response to the notification of 2 cases and 1 suspected case of APSGN in a Top End Arnhem land community.

Keywords: Acute post-streptococcal glomerulonephritis; APSGN; group A streptococcus; GAS; outbreaks; communities

Background

There were 2 cases of suspected acute post-streptococcal glomerulonephritis (APSGN) notified to Centre for Disease Control (CDC) in January/February 2012. These cases occurred in a Top End Arnhem Land community within a 5 day period and were not assessed to have any association with each other.

Both children were admitted to Royal Darwin Hospital and subsequent laboratory testing confirmed their diagnosis (see Figure: Case definition for APSGN). They recovered and were discharged back to the community.

A third case was suspected but did not meet the case definition for notification.

Household screening according to the Northern Territory Guidelines for Acute Post-streptococcal Glomerulonephritis\(^1\) was completed for the 3 households of the cases/suspected case by the community health clinic but did not identify any further cases within the households.

As there were 2 cases without an epidemiological link, community screening in line with the NT Guidelines\(^1\), was implemented to identify and prevent further cases.

Planning for a community screen of children aged 1 to <17 years (for scabies, skin sores and oedema) was commenced with 2 health clinic staff: an RN and medical officer for the community.

Historical data suggests that when 4 or more cases/suspect cases of APSGN occur anywhere in the NT in a 2 week period APSGN disease is more likely to be occurring Territory-wide.

With 2 confirmed cases and 1 suspected case from this community and another sporadic case in the Top End, the NT reached threshold for issuing an NT-wide alert.

The alert asked NT staff to check the following in any children presenting with puffy faces, sores or dark coloured urine;

- weight (look for sudden increase)
- BP (look for increase)
- urine (look for blood and protein)
- oedema, (puffy face and puffy eyes and swelling elsewhere).

Methods

Household screening

Household members were screened by health clinic staff for scabies, skin sores, oedema, haematuria and hypertension. Benzathine penicillin (LA Bicillin) was to be given to all children aged 1 to <17 years and to others outside this age-range who had skin sores present. Lyclear\(^\circledR\) (permethrin) was given to all those screened who had scabies. Any person with haematuria, hypertension or oedema was referred to the clinic for further assessment.

Community screening

The community screening team intended to go from house-to-house in the community with additional screening done opportunistically in the clinic. Planning for the community screen identified a number of resources required to complete the task.

Resources required were:

- Additional health staff from outside the clinic and clinic staff dedicated to the screen – enough to have 4 teams working across the community.
Reporting
Both confirmed cases and probable cases should be notified. Possible cases should be reported to Centre for Disease Control (CDC) but not notified to NTNDS.1

Confirmed case
A confirmed case requires either:
1. laboratory definitive evidence
2. laboratory suggestive evidence AND clinical evidence.

Probable case
A probable case requires clinical evidence only.

Possible case
A possible case requires laboratory suggestive evidence only.

Laboratory definitive evidence
Renal biopsy suggestive of APSGN.

Laboratory suggestive evidence
1. Haematuria on microscopy (RBC >10/μl)2
2. Evidence of recent streptococcal infection (positive Group A Streptococcal culture from skin or throat, or elevated ASO titre or Anti-DNase B)3

Clinical evidence
At least 2 of the following
• facial oedema
• >= moderate haematuria on dipstick
• hypertension4
• peripheral oedema

Notes
1. Possible (subclinical cases) are often found when screening individuals for APSGN but do not present with more than 1 clinical symptom. They do not have oedema or hypertension but on laboratory investigation are found to have haematuria, evidence of a streptococcal infection and a reduced C3. These cases should also be reported to CDC.
2. If microscopy is not available then moderate haematuria on dipstick fulfils this criteria.
3. If all other criteria have been fulfilled but the only evidence of recent streptococcal infection is isolation of Group C or Group G Streptococci from skin or throat, this could be notified as a confirmed case after discussion with CDC or an infectious disease physician.
4. Hypertension as defined in CARPA Standard Treatment Manual.2

Communication
There were 2 teleconferences held between the visiting team and Clinic Manager to plan the visit and allocate tasks. A telephone call was made by CDC RN and team leader for the screen to the General Manager Top End Remote Health and the Area Services Manager, Top End Remote Health with regard to the plan for the screen and whether the offer by 2 staff members from the One Disease at a Time Program could be utilised. It was left to the Remote Manager whether to utilise these 2 and it was decided this would be appropriate if the screen went into a second week. One of the discussion points during this conversation was ‘ownership’ of the public health response. To a certain extent initially there was a perception by the remote team that this was a CDC program and should be implemented by CDC. Further discussion moved this to being a recognised public health response that was required by the community to prevent further cases of APSGN. CDC staff emphasized that CDC was able to offer additional staff and expertise to help coordinate the program. It was recognised that it was unlikely to be successful without a strong commitment from the local clinic. The clinic reprioritised their work and fully backed the screen.
It was not possible to provide any broadcast media in the community as no Broadcasting for Remote Aboriginal Communities Scheme (BRACS) was available. Written translations of a message about the screen into the 3 major languages was requested from the Corporate Communications Unit and the Aboriginal Interpreter Service, however it was not possible for this to be done. Education materials included handwritten posters were put up by the clinic.

Hygiene posters (from the No Germs on Me. Handwashing Campaign) were sourced from the Environmental Health Program and ‘sticky hands’ and bandanas were brought to the community to give to children who required treatment with penicillin.

Further discussion occurred on Monday, 20 February about how the screen would progress and resources for the screening program were put together. The CDC staff provided a 1 hour education session for the local community workers.

Staff

The team consisted of 4 registered nurses (RNs), and 1 medical student from the CDC, 1 Aboriginal Health Worker (AHW) from Maternal Child and Youth Health, 2 RNs (1 for 2 days and 1 for 4 days) and 1 AHW from the health centre. In addition community workers from the Family as First Teachers (FAFT) Program were made available and on the first day a council staff member was available to drive and give information in the local language (FAFT workers were funded by CDC). There were 4 teams for the first 2 days of the screen then 3 for the next 2 days.

Transport

The health centre provided 2 vehicles, the shire council 1 vehicle and 1 was hired by CDC from the local Aboriginal corporation.

Documentation

A community list of children aged 1 to <17 years was downloaded into an Excel spreadsheet from Primary Care Information System (PCIS) including first name, family name, date of birth, age, sex, client identifier (HRN) and (usual) local health centre. Additional fields for collection of data for the screen were added. These were scabies, skin sores, oedema, Lyclear® (permethrin), LA Bicillin (benzathine penicillin), including dose and site and referral to medical officer.

The laptop computers were made available by the CDC staff and set up with modems and Virtual Private Network (VPN) access. Data entry in the field into PCIS service item Glomerulonephritis screen for each child screened was planned if possible. If this was problematic then entry into the printed spreadsheets during the screen with data entry either at the end of the day or at the end of the screen if necessary.

It was noted that this item in PCIS includes the fields:

- Contact with case – yes/no
- Scabies – yes/no
- Skin sores – yes/no
- Benzathine penicillin given – yes/no

The PCIS Glomerulonephritis screen item does not have the capacity to record whether oedema was present.

Recording of penicillin doses and permethrin dispensed was to be recorded separately on PCIS as a medication event.

Other requirements

It was identified that a map showing buildings and lot numbers was required. The map was accessed from the Department of Lands and Planning, Serviced Land Availability Program (SLAP).

Following discussion with CDC staff, clinic staff ordered 400 doses of benzathine penicillin and permethrin and extra supplies of hand and body wash.

An Oxy-Viva was required for each mobile team giving intramuscular penicillin in the community in case of anaphylaxis. There were 2 Oxy-Vivas supplied by the clinic and 2 sent by barge from CDC. Adrenaline and information sheets on adrenaline doses were included in each kit.

Results

Household screening

A total of 33 household contacts were identified
in the 2 households. Household 1 had 16 contacts (Table 1) and Household 2 had 17 contacts identified (Table 2).

Table 1. Household 1 contact tracing results

<table>
<thead>
<tr>
<th>Findings/actions</th>
<th>Contacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scabies present</td>
<td>7</td>
</tr>
<tr>
<td>Skin sores present</td>
<td>7</td>
</tr>
<tr>
<td>Oedema present</td>
<td>0</td>
</tr>
<tr>
<td>Haematuria</td>
<td>6</td>
</tr>
<tr>
<td>Hypertension</td>
<td>0</td>
</tr>
<tr>
<td>Aged 1 to <17 years</td>
<td>8</td>
</tr>
<tr>
<td>Aged 1 to <17 years given LAB*</td>
<td>4</td>
</tr>
<tr>
<td>Total LAB*</td>
<td>6</td>
</tr>
</tbody>
</table>

* LAB = LA Bicillin = benzathine penicillin

Table 2. Household 2 contact tracing results

<table>
<thead>
<tr>
<th>Findings/actions</th>
<th>Contacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aged 1 to <17 years</td>
<td>10</td>
</tr>
<tr>
<td>Scabies present</td>
<td>1</td>
</tr>
<tr>
<td>Skin sores present</td>
<td>3</td>
</tr>
<tr>
<td>Oedema present</td>
<td>0</td>
</tr>
<tr>
<td>Haematuria</td>
<td>8</td>
</tr>
<tr>
<td>Hypertension</td>
<td>0</td>
</tr>
<tr>
<td>Aged 1 to <17 years given LAB*</td>
<td>9</td>
</tr>
<tr>
<td>Total LAB*</td>
<td>9</td>
</tr>
</tbody>
</table>

* LAB = LA Bicillin = benzathine penicillin

Community screening

A total of 1105 children were identified from PCIS with this community clinic as their primary health service provider.

Screening was conducted from house-to-house with each team using the downloaded list of children and conducting the screening and treatment at the household. Clinic staff would screen children opportunistically in the clinic.

During the first day entry into PCIS was done in the field at the time the children were screened by 3 of the 4 teams (the fourth team did not have a computer).

Data entry was difficult as the computer screens were difficult to read in the conditions (often too sunny) and 1 computer had a battery-life of approximately 2 hours only. It was useful to be able to look up children to aid in identifying them by checking mothers’ names. It was not possible to download mothers’ names on the spreadsheet with routine reports available on PCIS. The team that was documenting on paper saw almost twice as many children that first day.

To be most efficient it was decided that the data would be entered at the end of the day if possible or as soon as possible after the screen to allow staff working in the clinic to know whether children had been screened and to determine coverage to date.

Entry of the data each evening was achieved on most days.

By the end of the first week 519 children had been screened. The total number of children likely to be present in the community (i.e. the denominator) was not known to the team at the time. Extension of the screen into a second week to achieve the coverage of 85% (the % regarded as adequate to prevent further cases) was being considered if the coverage was low. In addition to screening more children in the second week the plan was to identify children on the list that were resident in other communities.

After revision of the list utilising the AHW from the health centre, it was determined that approximately 391 children were living in other communities, leaving a target population of 714 in this community. The coverage at the end of the first week was therefore 72% (519/714).

A CDC RN and medical student returned, working with the AHW, and an additional 31 children were screened during the second week of screening. One advantage of this work was to reallocate children who were not living in the community to the appropriate health service. More accurate planning for other health activities (e.g. trachoma screening) affecting this group of children will be possible.

A total of 581 of the 714 (81.4%) (Table 3) children were screened according to the data extract from PCIS. The health clinic staff had screened 108 children before and after the visiting team screening dates (61 children
including some household contacts by 20 February and 47 after 29 February).

There were 13 of the 33 household contacts entered on PCIS under the Glomerulonephritis screen service item and have been excluded from the community screen results. An additional 15 children were entered on PCIS as contacts of cases that were not on the household contact lists. For the purposes of this report these were considered to be part of the community screen rather than house hold contacts.

There were no children screened who were found to have oedema and therefore no referrals were made to a medical officer.

There have been no further cases of APSGN from this community (as at 1 April) since this screening.

Considerations for future screens

The use of the ‘sticky hands’ and bandanas as incentives for children receiving intramuscular penicillin worked well and further thought about stickers, temporary tattoos or other incentives that could be used in the future deserves consideration.

Acknowledgements

The success of this screening would not have been possible without the combined effort of all staff from the health centre, workers from the Family as First Teachers (FAFT) Program, the shire council, Maternal Child and Youth Health and Centre for Disease Control Trachoma and Rheumatic Heart Disease Programs, Medical students Kim Manning (CDC) and Kate Scott (Royal Darwin Hospital Paediatric Unit) and CDC staff with professional and financial support from CDC Directorate.

Table 3. Community screening results

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
<th>Not recorded</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of children present aged 1 to <17 years</td>
<td>714</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total children screened</td>
<td>581</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Proportion of the target group screened</td>
<td>81.4%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Scabies present</td>
<td>128</td>
<td>464</td>
<td>4</td>
</tr>
<tr>
<td>Skin sores present</td>
<td>214</td>
<td>381</td>
<td>1</td>
</tr>
<tr>
<td>Benzathine penicillin given</td>
<td>199</td>
<td>393</td>
<td>5</td>
</tr>
<tr>
<td>Oedema present*</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Referral to medical officer*</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

*These items are not included on the PCIS Glomerulonephritis screen service item.

References

The Northern Territory (NT) Centre for Disease Control continues to play an important role in the global campaign to eradicate tuberculosis (TB) by focusing on the detection and treatment of the disease in its earliest stages.

While local infection rates are low in comparison to other places, the Territory has a role to play in the effort to arrest the spread of TB, and ultimately eliminate the disease.

World Tuberculosis Day (March 24), marked a worldwide focus on the health of children this year.

Australia records over 1200 cases each year, with 39 cases detected in the NT last year. As part of the global effort, the NT has an active program of screening refugees, support and education for patients and their families who have TB, tracing contacts, conducting high quality laboratory work for detection and observing cases as they are treated.

TB is spread when someone carrying the germs coughs, sneezes or speaks and infects people close-by. TB is often linked to chronic disease which lowers people’s resistance and to overcrowded housing where it spreads more easily.

In the Territory over the last 3 years 55 % of the cases were in people who had been born outside of Australia and 33 % were in the Aboriginal population.

The effort to cut the number of cases is greatly enhanced by identifying the disease early and treating it quickly. TB can sometimes masquerade as other disease and so the diagnosis is not always straight-forward.

Challenges still remain, as TB cases can develop many years after someone has been in contact with a TB-infected person. Also, there are strains that are drug resistant.

While an effective vaccine may still be years away, almost all people who get TB can be cured with the treatments that are now available.

A concerted world effort is the best way to beat this disease and the NT is certainly playing its part to make TB one for the history books and not for the present.

World Tuberculosis Day is held on the anniversary of Dr Robert Koch’s discovery in 1882 of the cause of TB, Mycobacterium tuberculosis.

For more information on the treatment of TB go to:www.health.nt.gov.au/Centre_for_Disease_Control/Publications/CDC_Factsheets/

Or contact your local CDC.

Centre for Disease Control (CDC) Website News

- The Melioidosis, Mosquito-borne diseases, Ross River virus CDC fact sheets are now available in Arabic, Bahasa, Dari, Farsi and Kurdish at health.nt.gov.au/Centre_for_Disease_Control/Publications/CDC_Factsheets/
- Updated Pneumococcal and Dengue Fever CDC fact sheets are also available on the CDC website.
Human T-lymphotropic virus 1 (HTLV-1) is a RNA retrovirus which predominantly infects CD4+ T lymphocytes and establishes lifelong infection. HTLV-1 is prevalent particularly in Africa, South America, the Caribbean, Western Pacific, Japan and in Central Australia, with estimates as high as 13.9% in some areas of Central Australia. The current prevalence estimate is 3.5% in the Alice Springs area but testing is largely limited to only adults with conditions known to be associated with HTLV-1. Nearly all of the notifications of HTLV-1 in the Territory were from Indigenous patients and predominantly from the Western Desert and Anangu Pitjantjatjara Yankunytjatjara (APY) lands. However, renal dialysis patients are routinely tested for blood-borne viruses and 31% of dialysis patients in the Alice Springs area tested in 2011 were seropositive for HTLV-1.

HTLV-1 associated diseases can be broadly categorised into malignant, inflammatory and infective conditions. Malignant diseases include the rapidly fatal acute T-cell leukaemia/lymphoma, chronic T-cell leukaemia/lymphoma, and cutaneous T-cell lymphoma, all of which have been documented in central Australia. Inflammatory syndromes include HTLV-1 associated myelopathy (HAM; also known as tropical spastic paralysis), uveitis, arthropathy, Sjogren’s syndrome, polymyositis and thyroiditis. Overseas studies estimate that approximately 10% of people with HTLV-1 will develop an associated malignant or inflammatory condition during their lifetime; but perhaps because these conditions often develop in the 5th decade of life, or later, the major impact of HTLV-1 in Central Australia is not seen. Locally the disease manifestations are more likely to be infective and this risk is harder to quantify. Infective conditions associated with HTLV-1 include more severe presentations of strongyloidiasis, crusted scabies, bronchiectasis and infective dermatitis. HTLV-1 has also been associated with tuberculosis and leprosy.

The most important route of HTLV-1 transmission is through breastfeeding. Intrauterine and peripartum transmission of HTLV-1 occurs in less than 5% of children of infected mothers, however, the risk increases to 20% with prolonged breastfeeding beyond 6 months of age. Studies have demonstrated that the risk of transmission can be reduced by up to 80% if breastfeeding is ceased at 6 months of age. A maternal HTLV-1 pro-viral load would help quantify the risk of transmission, however, HTLV-1 pro-viral load is not currently readily available in Australia. There was hesitation from the representatives from both the paediatric and obstetric staff in Central Australia to weaning breastfeeding at 6 months as it was felt it would not be feasible or culturally acceptable and may potentially be unsafe given the nutritional and anti-infective benefits of breastfeeding beyond 6 months of age. Logistical requirements and additional resources in education and the implementation of early weaning need to be considered prior to recommending breastfeeding cessation at any point in HTLV-1 positive mothers.

HTLV-1 is also transmitted via sexual intercourse and blood exposure such as transfusion and sharing needles or needle stick injuries. Sexual transmission occurs at a rate of 0.9 per 100 person-years with greater efficiency of transmission from men to women. Sexual transmission can be prevented by use of condoms. HTLV-1 infection from blood transfusion has been well described prior to the introduction of routine screening of blood donations however, possibly only one case of infection following occupational blood exposure has been reported. Needle-stick injuries from a HTLV-1 source should be discussed with an Infectious Diseases Physician to determine if post-exposure prophylaxis is required. Recipients should have HTLV-1 serology performed at 0, 3 and 6 months post-exposure.

The response to HTLV-1 is an issue that requires ongoing consideration. Follow up workshops for feedback and continued planning for HTLV-1 control are proposed. The forum highlighted several gaps in knowledge around this topic and include:

- the need for better estimates of local seroprevalence;
• better understanding of the potential clinical associations of HTLV-1, particularly infective;
• the risk/benefit of continuing breast-feeding beyond 6 months; and
• the awareness/acceptance Indigenous people have of this infection and any potential future interventions.

Concerted efforts need to be made to fill these evidence gaps as disease control measures are considered.

References

3. Markey P. Northern Territory CDC. Personal communication 2012.
Dengue mosquito incursion into Tennant Creek 2011

Peter Whelan, William Pettit and Vicki Krause

CDC, Darwin

Abstract

This article reviews the past establishment of the dengue mosquito Aedes aegypti in the Northern Territory, provides an update on the current elimination program in place in Tennant Creek and explores local and national implications of the incursion.

Key words: dengue; mosquito; eradication

Background

The dengue mosquito Aedes aegypti was present in the Northern Territory (NT) from early settlement up until the 1950’s and was responsible for large outbreaks of dengue fever.1 Dengue, a viral disease of humans, is an appreciable and increasing public health problem in tropical regions, with many thousands of cases and many deaths in countries to the north of Australia.2 Dengue is not endemic in Australia, although the principal vector of this disease, the dengue mosquito Ae. aegypti, is established in north and western Queensland, where importation of the virus in infected travelers from overseas leads to regular outbreaks of dengue disease from Townsville to Cape York.3

Ae. aegypti was previously widely established in the NT where it was recorded from many towns in the northern half of the NT, including Darwin, Pine Creek, Katherine, Mataranka and Larrimah, with the most southern extension at Anthony’s Lagoon and Newcastle Waters and it was never recorded in Tennant Creek.4,5 There was a decrease in distribution after 1946, with a probable absence from Darwin in 1953,1 but it remained established in some locations until at least 1956.6

Figure. Tennant Creek round 1, Week 2 team
Ae. aegypti disappeared in the NT some time between 1956 and 1974, with the date of disappearance unable to be verified as there were very few mosquito surveys in the intervening years. The decline and disappearance is thought to be due to the result of widespread reticulation of water during and soon after World War 2 and the coincidental removal of rainwater tanks.1,4,6

Medical Entomology (ME) of the NT Department Health (DoH) has a surveillance program to detect the possible importation or establishment of exotic mosquitoes in the NT, particularly the Aedes vectors of dengue.7 In 1974 regular mosquito larval surveys, human biting collections, and light trapping were started in Darwin by ME. These surveys and collections were extended and intensified over the following years to include ovi-traps (special egg traps) around overseas arrival seaports and airports, regular CO2 baited light-trapping (EVS traps) in principal towns and widespread larval surveys of most towns and communities.7 While many exotic mosquito importations were recorded from port areas around Darwin, all these importations were subject to elimination measures and none became established until 2004.8,9,10

In 2004 an incursion of Ae. aegypti was detected in Tennant Creek and although it was well established was subsequently eliminated after an intensive campaign.11,12,13,7 DNA analysis of these mosquitoes indicated the incursion was imported from North Queensland, probably as eggs in dry receptacles from Cairns by vehicle transport.14

In October 2006 another incursion and establishment of Ae. aegypti was detected on Groote Eylandt by the ovitrap surveillance method. The subsequent elimination of this species from Groote Eylandt was declared in April 2008.5 It has not been subsequently detected on Groote Eylandt or established elsewhere in the NT.

The NT remains very receptive to receptacle breeding mosquitoes. There are relatively high populations of receptacle breeding species such as Aedes notoscriptus and Aedes tremulus detected by regular adult mosquito trapping in various towns and communities in the NT.15 Ovitrap results from residential and industrial areas in the major towns indicate year round breeding, with seasonal peaks in the wet season.15 Receptacle surveys of various towns and communities indicate a relatively high number of receptacles per property that can breed endemic mosquitoes.15

The recent detection

The dengue mosquito was discovered again in Tennant Creek in 2011. It was first detected in an ovitrap. A preliminary larval and adult survey in late October 2011 followed early wet season rains and found the mosquito widely established in the town. It was possibly imported from north Queensland as adults in vehicles such as coach buses, or in receptacles as drought resistant eggs. Specimens have been sent for DNA analysis to see if a possible origin can be determined.

The elimination program

ME started a coordinated and intensive program to eliminate this incursion as soon as it was clear an establishment was present. The program plan includes a media program to encourage public cooperation and a property by property survey and treatment of all receptacles. The proposed 18-month program will involve 2 components, with 1 centered on Tennant Creek town, with the other focused on nearby towns and communities to determine if this mosquito has spread.

The program in Tennant Creek will involve both dry and wet season property by property larval surveys, and applying the pyrethroid residual insecticide alpha-cypermethrin, liquid chlorine or pellets of a mosquito hormone insecticide, methoprene, to all appropriate receptacles in all 1100 odd properties. Additionally a barrier spray of alpha-cypermethrin will be applied to appropriate areas around premises to provide residual control of adult mosquitoes. Piles of internally sprayed tyres with water and pellets of methoprene have been established near the transport hubs of all bus and road transport companies to lure, trap and kill any adults about to harbour or lay eggs. Other treatments will concentrate on roadside drains and rehabilitation of the municipal dump in cooperation with the local Barkly Shire council. Elimination will rely on treatment of all receptacles capable of holding water and clean up programs with the
residents and the local Shire participation. Surveys will need to be negative for a complete wet season after the last detection for elimination to be declared successful.

The cycle of survey and treatment of all properties will need to be repeated every 6 to 8 weeks in the wet season, with some relaxation of inspections in Tennant Creek over the dry season from May to November. A team of at least 6 new full time staff will be required to do the surveys and treatments, adult trapping, larval and adult identifications, data recording, organisation, logistics, project management, field supervision, analysis, communications, rectifications, procurement and other town and community surveys and treatments. Project staff will be supported by ME staff. The evaluation of the ongoing progress of the elimination project will be evaluated by larval survey results and adult traps.

Progress to date

The initial surveys and treatments have been carried out by ME staff from Darwin, with assistance from Environmental Health staff, other CDC staff and volunteers from DOH and other government organisations. Local based project staff are being recruited. The potential threat of this incursion and the national implications have been highlighted.

The Department is seeking the cooperation of residents to help stop the spread of these mosquitoes. A post office box drop has been carried out to alert residents of the measures they can take to assist the program. The local newspaper has run stories and there have been full-page ads in the paper illustrating potential breeding places and measures that can be taken by residents. Posters have been put up at public points.

The first complete round of property inspections and treatment was started on 23 November 2011 and completed on the week ending 10 February 2012. In this round there were 1070 properties inspected in Tennant Creek, with 146 properties positive for Ae. aegypti and 195 receptacles positive, representing 13.6 % properties positive for the mosquito (Table). The number of properties positive for Ae. aegypti per week declined from a high of 45 in week 4 to 1 in week 9. The number of positive receptacles declined from 64 in week 4 to 1 in week 9. This is an apparent rapid decline in infestation. However, due to the below average rain in Tennant Creek in January and February, many potential receptacles were dry and this rate of detection represents a probable under estimate of properties initially infested. During some weeks in January after rain, the rate of detection of positive properties was up to 20%. Despite this aspect there was undoubtedly a real and very appreciable reduction in the number of receptacles with larvae and possibly with eggs. By the end of Round 1 a very large majority of the receptacles in Tennant Creek had residual insecticide applied to them and will not be able to successfully produce larvae or adult mosquitoes when rain reoccurs.

Dengue mosquito positive receptacles have included tyres, pot plant drip trays, bird baths, drums, frog breeding drums, disused fish ponds, poorly maintained swimming or wading pools and spas, take away meal containers, canoes and boats, sheets of plastic and canvas, old machinery, car bodies, discarded construction materials, animal water receptacles, garden items such as wheel barrows and watering cans, mower catchers, rainwater tanks and buckets used for striking plant cuttings. There have been a few properties where owners have been reluctant for project staff to inspect or treat and a very few where residents have been non cooperative. Each of these problem properties will eventually be required to be inspected to confirm all breeding places have been eliminated. In the last week of Round 1, in the middle of a dry period, there was still 1 receptacle positive in 1 property in the last of the properties to be inspected, illustrating that a single property can continue to supply dengue mosquitoes for nearby properties and thus reinforcing the need for every property to be inspected and free of this mosquito.

Round 2 has now begun, and by the end of week 3 of this round on 24 February, 534 properties had been reinspected and retreated. On day 1 during week 4 of Round 2 starting on 27 February, there were 2 properties detected with Ae. aegypti larvae, while all other properties had water in receptacles with no larvae. These positive detections were in receptacles used for pet water, where treatments were non insecticidal, with either chlorine or methoprene pellets applications, which are usually short term
treatments. These detections followed rain the previous week and demonstrates that the program will take a number of rounds to achieve elimination while all the negative receptacles so far in Round 2 demonstrates our treatments to date are generally working very well.

Discussion

The rapid reduction of properties infested is urgently required in order to prevent the spread of this species to other towns in the NT and beyond. If it spreads north, it could become established in Darwin urban and rural properties and other higher rainfall towns, where it would be extremely hard to control or eliminate. This could lead to the re-establishment of dengue endemicity in the NT and periodic outbreaks of dengue.

The elimination of *Ae. aegypti* is a national public health matter and has been recognised as such by the expert committee of the National Arbovirus and Malaria Advisory Committee (NAMAC) advising the Commonwealth Department of Health. The infestation is likely to be the result of the mosquito being transferred from one jurisdiction to another. It also has the potential to spread to other jurisdictions such as Western Australia, where environmental conditions and history suggest spread is likely. This will be a serious threat to NT public health, but also to national public health. It will be extremely detrimental to the Queensland public health effort to control periodic dengue outbreaks, as the interstate spread of dengue cases will open another front in their dengue battle and threaten the current strategy to contain dengue outbreaks from overseas case importations.

Large outbreaks of dengue in northern Australia would have a negative impact on both national and international tourism and workforce mobility, with potentially serious impacts on industry.

The continued widespread occurrence of *Ae. aegypti* in coastal and western Queensland, means that the NT will be continually vulnerable to the transport of this species by vessels or roads to towns and communities not covered by overseas arrival port surveillance. This latest incursion is another reminder of this vulnerability and strengthens the case for a reduction in the footprint of this species in north and western Queensland.

There have been very few reported successful attempts to eradicate established populations of *Ae. aegypti* in any area of the world.\(^{16,2}\) One of these was the highly successful, vertically structured paramilitary eradication campaign directed by the Pan American Sanitary Board from 1946 to 1970\(^{17}\) which resulted in the elimination of *Ae. aegypti* from a number of countries in South America. However in the years after this elimination there was a relaxation of survey and control and many of these countries have been re-infested and are now facing very large dengue outbreaks.

The progress in achieving near complete coverage of every property in Tennant Creek before further wet season rains is very encouraging. It is probable that the population of this mosquito is quite low in Tennant Creek at present. The current risk of dengue transmission in Tennant Creek is now extremely remote. It would require someone with overseas acquired dengue fever going there and being bitten by one of these mosquitoes. This infected mosquito would then have to live at least 8-12 days to bite another person to transmit the dengue virus. With the amount of residual insecticide barrier spraying in many properties, this survival now becomes a very low probability. However complete elimination will require many more rounds of property surveys and treatment and then repeated surveys until we can be sure this mosquito has been eliminated.

The NT exotic vector program is an example of one of the very few successful programs in the world able to detect and maintain an *Ae. aegypti* free status in a demonstrated vulnerable and receptive geographic area for over 35 years. The NT program has demonstrated that elimination can be sustained over the long term and is an effective approach.

Acknowledgments

An enormous thank you to the following staff and volunteers who volunteered to help in difficult and trying conditions for long hours, and were extremely professional and
hardworking, while being courteous and cooperative with each other and the public. These people were vital in ensuring such a rapid decline in mosquito numbers, and have probably prevented the spread of this mosquito to other towns.

Staff involved in order of deployment over the 11 weeks to 2/3/2012. Numbers after names are numbers of weeks deployed.

Nina Kurucz x 4 (ME), Huy Nguyen x 5 (ME), Ben Maunder x 5 (ME), Peter Whelan x 3 (ME), Anne Neubauer (EHO Darwin), Michael Bethune x 2 (EHO Darwin), Ryan Mclean x 3 (EHO ASp), Allan Warchot x 4 (ME), Matt Brearly (NCCTRC), Ted Murphy (NCCTRC), Charles Pitia (NCCTRC), Mahesh Menon (CDC Darwin), Noeleen OShea (CDC Darwin), Christopher Blow x 3 (EHO Darwin), Brendon Sherratt (EHO Darwin), Jane Carter x 4 (ME), Chris Nagy (CDC Darwin), Inda Acharya (NCCTRC), Vicki Gaffney (CDC Kath), Karla James (EHO Kath), Gemma Farmer (CDC Darwin), Sharon Murray (CDC Darwin), Melinda Leach (NCCTRC), Jamie Akers (NCCTRC), Joshua Farrell x 2 (VOL), Jaana Wenham (ME), Bill Petit x 4(ME), Arron Clifford (EHO ASp), Chris Heather (CDC Darwin), James Gazzard (RDH), Kylene Prince (CDC Alice Springs), Mark Russell (CDC ASp), Chris Hogarth (VOL).

Abbreviations

(ME) Medical Entomology Darwin, (NCCTRC) National Critical Care Trauma Response Centre Darwin, (EHO) Environmental Health Officer, (CDC) Centre for Disease Control, (RDH) Royal Darwin Hospital, (VOL) Volunteer.

References

5. Whelan PI, Kulbac M, Bowbridge D, and Krause

15. ME annual reports. Medical Entomology, Centre for Disease Control, Department of Health and Families, Darwin NT.

Zoonoses

CONFERENCE 2012

bringing docs and vets together

an ASID Workshop on Emerging Issues in Animal and Human Infections in Australia

With support from the AVA

The Australasian Society for Infectious Diseases, with support from the Australian Veterinary Association, is holding a 2 day meeting **Friday-Saturday July 27/28 2012**. The venue is the **Eastern Avenue Complex** at the **University of Sydney**.
Rainwater tanks

In Australia, fresh water is a valuable and limited resource. Rainwater can provide a renewable supply of natural, soft, clear and odourless water that we can use for a range of purposes including drinking, washing, bathing, laundry and gardening. In some places it may be the main source of household water and in others it can supplement mains water supplies.

Note: You must find out local water authority requirements before interconnecting tanks with mains water supplies and determine if water from rainwater tanks in that area is suitable for drinking.

Water quality

The microbiological quality of rainwater collected in domestic tanks may be lower than that of many mains water supplies. However, if systems are properly and fully screened, have first flush diverters, are not in fallout areas from industrial processes and are well maintained, the risk from harmful chemicals or organisms being present is low.

Rainwater in tanks generally contains few chemicals. However, there may be risk of rainwater pollution by airborne contaminants in major urban centres, industrial areas or in ash fallout areas.

There can be faecal contamination by flying foxes (fruit bats), possums and fruit eating birds if there are fruit trees or palms near to a roof. Overhanging trees can add leaves and trap organic materials in roof gutters that can lead to high organic levels in the tank. Some plants (iron woods Erythrophleum chlorostachys, Oleander etc) have toxic chemicals in their leaves or fruit.

Note: You should not collect rainwater for human consumption (drinking and food preparation) in areas affected by heavy traffic, industry, incinerators and/or smelters.

Fluoride

Rainwater does not contain fluoride. If rainwater is your major source of water for drinking and food preparation, you should seek advice from your local dentist, school or community dental service or from the Australian Dental Association about alternative sources of fluoride.

Safety

Rainwater is generally safe to drink providing it is clear, has little taste or smell, and is from a well maintained system. If you are very young or very old or immuno-compromised (a cancer patient, diabetic, have had organ transplants or are HIV positive) you should consider disinfecting the water before drinking or cooking with it. You can do this by boiling the water.

Protecting water quality

Making sure water quality is good depends on correct design and installation, followed by sensible maintenance of your rainwater tank and catchment area. Collecting rainwater involves low maintenance, not no maintenance.

The tank

Tanks are available in a range of materials (galvanised steel, concrete, fibreglass and plastic). All can be suitable, providing the tank has been made specifically for collecting rainwater. You may have to wash or flush some types of new tanks before use. The manufacturer should be able to tell you if this is necessary.

The tank should be of a design suitable for the Northern Territory (NT).

When installed, your tank should be covered and every access point, except the inlet and overflow should be sealed (unless in use). The inlet should incorporate a stainless steel mesh cover and strainer to keep out foreign matter and to stop mosquitoes and other insects getting into the tank. The overflow should be covered with a similar insect-proof screen.
The catchment

House and shed roofs are usually used as catchment areas. Rainwater can be collected from most types of roof, providing they have not been painted with lead-based paint or coated with bitumen-based material. Check that there is no corroded material in the catchment area on equipment such as hot water or solar systems. Some types of new tiles and freshly applied acrylic paints may affect the colour or taste of rainwater so you may need to discard the first few run off episodes.

Avoid using pesticide-treated timbers and lead flashing in roof catchments. Also, do not collect rainwater from parts of roofs incorporating flues from wood burners.

Overflows or discharge pipes from roof-mounted evaporative air conditioners or hot water systems should not be allowed to discharge onto the roof catchment area.

First flush devices

First flush devices stop the first portion of roof run-off being collected and will reduce the amount of dust, bird droppings and organic material from leaves that can collect on roofs or gutters from being washed into tanks. It is recommended that you use such devices.

Maintenance

Keep roof catchments and gutters clean and clear of leaves and debris. Remove overhanging branches. Regularly inspect gutters and clean if necessary. Consider using gutter guards.

You should clean insect-proof screens regularly. Do not allow tanks and gutters to become breeding sites for mosquitoes. A tell tale sign for blocked gutters and potential mosquito breeding is a constant drip in the down pipe. Mosquitoes that breed in blocked gutters or rainwater tanks include the receptacle mosquitoes (*Aedes notoscriptus* and *Aedes tremulus*). The dengue mosquito *Aedes aegypti*, a mosquito usually absent from the NT, can breed in non-draining or blocked roof gutters and unsealed rainwater tanks.

If you detect mosquitoes in a tank, locate and seal or screen the entry point. A specific mosquito control insecticide (methoprene) can be added as a charcoal briquette in a piece of panty hose with a float for retrieval for 3 month maximum control as a temporary control measure. There are other surface floating products that can prevent mosquito breeding, so check with the local health authority or the Medical Entomology section. As a last resort, for most types of tanks, you can add 10 mls of domestic kerosene to 1 ml of clove oil to the top of the water every month to stop mosquitoes from breeding.

Note: *Kerosene is not suitable for use with some tank materials, for example, Aquaplate R.*

Check tanks for sludge accumulation at least every 2-3 years. If sludge is covering the bottom of the tank, siphon it our or completely empty the tank. Professional tank cleaners operate in many areas.

Disinfection

Regular disinfection should not be necessary. If you suspect that water in the tank is contaminated with organic material, you can chlorinate rainwater by adding 40 ml of liquid sodium hypochlorite or 7g of granular calcium hypochlorite per 1000L of water (approximately 5mg/L chlorine) until you remove the contamination source.

For further information refer to NT Department of Health resource: Environmental Health Fact Sheet No. 400: Disinfection of water tanks.

Size of tanks

The size of tank you need to provide the total supply of household water will depend on a number of factors, including the amount and pattern of rainfall, roof area and water usage. The most important issue will be continuity of supply.

If your tank is to provide an alternative supply to mains water, the size of the tank is not a critical issue and will often depend on your needs (drinking and food preparation, bathing, laundry) balanced against cost.
Regulations

Before you purchase or install a rainwater tank, find out the health, building or planning regulations about rainwater tanks in your area.

In the NT there is legislation that states all rainwater tanks must be sealed and mosquito proof so that they can not breed mosquitoes (NT Public and Environmental Health Act, Mosquito Regulations).

For further information refer to NT Department of Health resource: [Environmental Health Fact Sheet No. 404: Requirements for the use of rainwater tanks](https://www.health.gov.au/).

Advice

You can obtain more details from the Medical Entomology unit or your local Environmental Health Officer.

Medical Entomology

CDC NT Department of Health
Telephone: 08 8922 8901
Email: peter.whelan@nt.gov.au

Environmental Health

Phone: 1800 095 646 or your local office.
Email: envirohealth@nt.gov.au

Hope for hepatitis sufferers

The Australian Therapeutic Goods Administration (TGA) has approved VICTRELIS® for the treatment of chronic hepatitis C, genotype 1, the most common form of the condition affecting 55% of all sufferers. The approval of VICTRELIS® provides another option in the treatment of hepatitis C, a condition that has been without another treatment option in more than 10 years.

Chronic hepatitis C is a major public health burden in Australia and affects around 220,000 Australians, with 10,000 new cases reported annually. Without other treatment options and appropriate intervention, estimates of new cases stand at approximately 500,000 by 2020. If left untreated, hepatitis C can cause serious liver disease including cirrhosis, liver cancer and death.

In the last 10 years there has been little development in the availability of treatments for hepatitis C and a significant proportion of patients fail to respond to the current standard of care. VICTRELIS® is an approved treatment that works directly on the hepatitis C virus and prevents it from replicating and therefore reproducing.

VICTRELIS®, a direct acting anti-viral agent (DAA), is used in combination with the current standard of care peginterferon alfa and ribavirin. VICTRELIS®, a protease inhibitor, interferes with an enzyme involved in the replication of the hepatitis C enzyme.

Unfortunately, hepatitis C is a silent disease where there is very little awareness of the condition and patients often present late with severe complications. Hepatitis C is a huge burden for individuals and is still very heavily stigmatised. Having another new treatment option marks progress in the management of patients with this disease.

The product information for VICTRELIS® is available on request from the TGA website https://www.ebs.tga.gov.au
Melioidosis

What is melioidosis?
Melioidosis is a disease caused by bacteria known as \textit{Burkholderia pseudomallei}. The bacteria live below the soil's surface during the dry season but after heavy rainfall are found in surface water and mud and may become airborne.

How is it spread?
The bacteria that causes melioidosis usually enters the body via cuts and sores in the skin or via inhalation of dust or droplets and very rarely by ingestion of contaminated water.
The disease has been found among some domestic and farm animals. Melioidosis does not usually spread from one person to another or from animals to humans.

Where does melioidosis usually occur?
Melioidosis is found in tropical areas throughout the world, particularly in South East Asia and northern Australia.
In Australia cases typically occur in the Top End of the Northern Territory (NT) and in far north Queensland and the Kimberley region of Western Australia. Cases have been found in the NT occasionally as far south as the Tennant Creek region.

What are the symptoms?
The symptoms of melioidosis depend on the site of the infection and this can vary. Often it starts as a chest infection with shortness of breath, productive cough and fever. Other possible presentations include fever with headache and confusion, or pain and/or difficulty passing urine. People can become ill from 1 to 21 days after being infected and the onset of symptoms may be sudden or gradual. The infection can be fatal and melioidosis requires urgent medical attention and treatment with specific antibiotics.
In some cases the illness may come on much more slowly with weight loss, intermittent fever, chest pain and a cough. Some people may present with skin ulcers, boils or joint or bone infections.
There have also been cases where the disease has caused illness many years after the initial infection. In these cases, the bacteria have been carried by the person and have become active due to a weakening of the immune system.
The diagnosis of melioidosis is made by growing the bacteria with laboratory testing of blood, sputum, urine or a swab from an abscess or non-healing ulcer.

Who is at risk?
People most at risk are those with conditions such as diabetes, heavy alcohol consumption, kidney disease, lung disease, and those on immunosuppressive therapy including steroids.
Healthy people can also get the disease if they work in muddy soil without good hand and foot protection. Children are at a lower risk for acquiring melioidosis compared with adults. However, it is still possible for children to acquire melioidosis during the wet season, particularly those with chronic diseases or weakened immune systems.
What is the treatment?
All patients should be admitted to hospital initially. They are treated with antibiotics, which usually have to be continued for at least 3 months. If treatment is started early, recovery is usually complete. It is important to complete all antibiotics to prevent a relapse.

How can melioidosis be prevented?
There is currently no vaccine against melioidosis. Therefore preventive measures are the key to avoiding infection. People with past melioidosis can be infected again after new exposure

Waterproof shoes or boots will protect your feet when you walk in wet soil where there is pooled water or you work in muddy conditions, for example, when gardening or working in excavations. Open footwear such as sandals are not very good protection. Protective gloves should be worn when handling soil, particularly during the wet season.

Wounds should be promptly and thoroughly washed clean and covered. If necessary, use pumping equipment to control water ingress when working in excavations.

Due to the potential for aerosolisation (airborne droplets) of Burkholderia pseudomallei people with risk factors such as diabetes, heavy alcohol consumption, kidney disease, lung disease and cancer and those on immunosuppressive therapy should stay indoors during periods of heavy wind and rain in the Top End.

Children should avoid playing in muddy areas, wet sandpits or places where water has pooled in grassy areas or where grassed areas are boggy. Sandpits which are dry or dry enough to comfortably play in are also low risk.

These preventative measures are most important if you have any of the following conditions:
- diabetes
- heavy alcohol consumption (>20 standard drinks a week or binge drinking)
- kidney disease
- lung disease
- cancer
- receiving immunosuppressive therapy, including steroids.
- cuts or sores in your skin, particularly on the hands and feet.

For more information contact the CDC in your region

<table>
<thead>
<tr>
<th>Location</th>
<th>Phone Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice Springs</td>
<td>8951 7540</td>
</tr>
<tr>
<td>Darwin</td>
<td>8822 8044</td>
</tr>
<tr>
<td>Katherine</td>
<td>8973 9049</td>
</tr>
<tr>
<td>Nhulunbuy</td>
<td>8987 0357</td>
</tr>
<tr>
<td>Tennant Creek</td>
<td>8962 4259</td>
</tr>
</tbody>
</table>

or

www.nt.gov.au/health/cdc
NT NOTIFICATIONS OF DISEASES BY ONSET DATE & DISTRICTS
1 January – 31 December 2011 & 2010

<table>
<thead>
<tr>
<th>Disease Description</th>
<th>Alice Springs</th>
<th>Bardi</th>
<th>Darwin</th>
<th>East Arnhem</th>
<th>Katherine</th>
<th>NT T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute poststrept glomerulonephritis</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Adverse vaccine reaction</td>
<td>10</td>
<td>15</td>
<td>1</td>
<td>1</td>
<td>37</td>
<td>37</td>
</tr>
<tr>
<td>Amoebiasis</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Arbovirus - not otherwise specified</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>Barnah Forest</td>
<td>5</td>
<td>8</td>
<td>1</td>
<td>2</td>
<td>68</td>
<td>48</td>
</tr>
<tr>
<td>Brucellosis</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Campylobacteriosis</td>
<td>36</td>
<td>32</td>
<td>6</td>
<td>4</td>
<td>109</td>
<td>102</td>
</tr>
<tr>
<td>Chickenpox</td>
<td>15</td>
<td>29</td>
<td>4</td>
<td>14</td>
<td>46</td>
<td>66</td>
</tr>
<tr>
<td>Chlamydia</td>
<td>858</td>
<td>856</td>
<td>56</td>
<td>42</td>
<td>1270</td>
<td>1272</td>
</tr>
<tr>
<td>Chlamydial conjunctivitis</td>
<td>12</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>15</td>
<td>11</td>
</tr>
<tr>
<td>Cryptosporidiosis</td>
<td>36</td>
<td>38</td>
<td>2</td>
<td>0</td>
<td>35</td>
<td>34</td>
</tr>
<tr>
<td>Dengue</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>55</td>
<td>27</td>
</tr>
<tr>
<td>Diptheria</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Food/water borne disease</td>
<td>5</td>
<td>11</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gastro-related cases</td>
<td>0</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Gonococcal conjunctivitis</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Gonococcal infection</td>
<td>1146</td>
<td>1083</td>
<td>70</td>
<td>74</td>
<td>356</td>
<td>370</td>
</tr>
<tr>
<td>Gonococcal neonate ophthalmia</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Group A streptococcal invasive</td>
<td>0</td>
<td>13</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>21</td>
</tr>
<tr>
<td>Hepatitis A</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Hepatitis B - chronic</td>
<td>66</td>
<td>51</td>
<td>8</td>
<td>1</td>
<td>36</td>
<td>36</td>
</tr>
<tr>
<td>Hepatitis B - new</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Hepatitis B - unspecified</td>
<td>42</td>
<td>70</td>
<td>3</td>
<td>4</td>
<td>91</td>
<td>96</td>
</tr>
<tr>
<td>Hepatitis C - new</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Hepatitis C - unspecified</td>
<td>39</td>
<td>33</td>
<td>5</td>
<td>0</td>
<td>137</td>
<td>164</td>
</tr>
<tr>
<td>H influenza b</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>H influenza non-b</td>
<td>7</td>
<td>8</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>HIV</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>HTLV1 asymptomatic/unspecific</td>
<td>75</td>
<td>50</td>
<td>5</td>
<td>0</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Haemolytic uraemic syndrome</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Influenza</td>
<td>11</td>
<td>207</td>
<td>5</td>
<td>11</td>
<td>307</td>
<td>179</td>
</tr>
<tr>
<td>Kunjin Virus</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Legionellosis</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Leprosy</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Leptospirosis</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Listeriosis</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Malaria</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>23</td>
</tr>
<tr>
<td>Measles</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Meliodosis</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Meningococcal infection</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Mumps</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Murray Valley encephalitis</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Non TB Mycobacteria</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>Pertussis</td>
<td>237</td>
<td>32</td>
<td>4</td>
<td>3</td>
<td>85</td>
<td>308</td>
</tr>
<tr>
<td>Pneumococcal disease</td>
<td>37</td>
<td>78</td>
<td>3</td>
<td>6</td>
<td>18</td>
<td>31</td>
</tr>
<tr>
<td>Q Fever</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rheumatic Fever</td>
<td>12</td>
<td>21</td>
<td>1</td>
<td>0</td>
<td>18</td>
<td>28</td>
</tr>
<tr>
<td>Ross River Virus</td>
<td>32</td>
<td>19</td>
<td>3</td>
<td>4</td>
<td>262</td>
<td>133</td>
</tr>
<tr>
<td>Rotavirus</td>
<td>150</td>
<td>85</td>
<td>21</td>
<td>6</td>
<td>92</td>
<td>31</td>
</tr>
<tr>
<td>Salmonellosis</td>
<td>80</td>
<td>39</td>
<td>13</td>
<td>7</td>
<td>368</td>
<td>237</td>
</tr>
<tr>
<td>Shigellosis</td>
<td>28</td>
<td>42</td>
<td>0</td>
<td>6</td>
<td>27</td>
<td>21</td>
</tr>
<tr>
<td>STEC/TEC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Strongyloidiass dissem</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Syphillis < 2y</td>
<td>20</td>
<td>7</td>
<td>5</td>
<td>9</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>Syphillis > 2y or unknown</td>
<td>31</td>
<td>16</td>
<td>1</td>
<td>3</td>
<td>40</td>
<td>27</td>
</tr>
<tr>
<td>Trichomonias</td>
<td>686</td>
<td>972</td>
<td>127</td>
<td>124</td>
<td>646</td>
<td>747</td>
</tr>
<tr>
<td>Tuberculosis</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>21</td>
<td>31</td>
</tr>
<tr>
<td>Typhoid</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Typhus</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Varicella - unspecified</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Vibrio food poisoning</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Vibrio invasive</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Zoster</td>
<td>30</td>
<td>34</td>
<td>7</td>
<td>4</td>
<td>78</td>
<td>115</td>
</tr>
<tr>
<td>Total</td>
<td>3,723</td>
<td>3,962</td>
<td>364</td>
<td>338</td>
<td>4,413</td>
<td>4,313</td>
</tr>
</tbody>
</table>

The Northern Territory Disease Control Bulletin Vol 19, No. 1, March 2012
Ratio of the number of notifications in 2011 to the mean 2006-2010: selected diseases

Ratio of the number of notifications in 2011 to the mean 2006-2010: sexually transmitted diseases
Comments on notifications p 28

HTLV-1

There were 55 cases of HTLV-1 notified in 2011 compared to the 5 year mean of 92. This is likely to be due to a drop off in the number of tests being performed. It is also possible that with the increase in testing that happened during the previous 5 years the number of undiagnosed cases has decreased – further research is being planned in this area.

Zoster (shingles)

Case numbers of zoster (shingles) for 2011 were 191, the highest recorded since the disease became notifiable in 2005 and 1.8 times the 5 year mean of 106. This is most likely due to increased access to and awareness of the polymerase chain reaction (PCR) testing. Nevertheless, there is a theoretical risk that zoster may increase as a result of decreasing amounts of circulating chickenpox due to the vaccine program. Further study is being undertaken in this area.

Invasive pneumococcal disease

There were 136 cases of invasive pneumococcal disease notified in the 2011, twice the number reported for 2010. Cases due to the serotype 1 outbreak that commenced late in 2010 contributed to 46% of all NT-wide cases in 2011.

Adverse events following vaccination (AEFI)

There were 64 adverse events following immunisation in 2011 compared with 60 in 2010 and a 5 year mean of 50. In the past 2 years the Therapeutics Goods Administration (TGA), as a result of clusters of adverse events following some vaccines elsewhere, recommended nationally the temporary cessation of subsequent doses of Pneumovax®, the cessation of use of Fluvax® in children < 5 years and cautionary use of this vaccine in 5-10 year olds. These events triggered a heightened awareness nationally of and diligence for reporting all adverse events, including minor ones that may have not been reported in the past. All adverse events (both major and minor) reported to CDC have been added to the database in 2010 and 2011 to assist in heralding any further clusters.

Trichomoniasis

Trichomoniasis has replaced chlamydia as the most frequently notified disease in the NT in 2011 for the first time. The most likely reason for this sharp increase was a similarly sharp increase in testing. Testing data collected from the major private pathology laboratory offering the only nucleic acid testing for trichomonas to remote districts showed the number of tests in 2011 increased by 73% over the average number of tests for 2008-2010 (see Figure). The positivity rates remained at approximately the same level.
Immunisation coverage 31 December 2011

Compiled by Charles Strebor, CDC, Darwin

Immunisation coverage rates for NT children by regions based on Medicare address postcode as estimated by the Australian Childhood Immunisation Register are shown on page 31.

Background information to interpret coverage

Winnellie PO Bag is postcode 0822, which includes most Darwin Rural District communities, some East Arnhem District communities and some people who live in the Darwin “rural area” who collect mail from the Virginia store or Bees Creek. Alice Springs PO Bag is postcode 0872, which includes Alice Springs District, Nganampa and Ngaanyatjarra communities.

The cohort of children assessed at 12 to <15 months of age on 31 December 2011 were born between 1 July 2010 and 30 September 2010 inclusive. To be considered fully vaccinated, these children must have received 3 valid doses of vaccines containing diphtheria, tetanus, pertussis, and poliomyelitis antigens, either 2 doses of PRP-OMP Hib or 3 doses of another Hib vaccine, and 2 doses of hepatitis B vaccine (not including the birth dose) and 1 dose of measles, mumps, rubella vaccine (latest doses due at 12 months of age). All vaccinations must have been administered by 24 months of age.

The cohort of children assessed at 24 to <27 months of age on 31 December 2011 were born between 1 July 2009 and 30 September 2009 inclusive. To be considered fully vaccinated, these children must have received 4 valid doses of vaccines containing diphtheria, tetanus, pertussis antigens, 4 doses of poliomyelitis vaccine and 2 valid doses of measles, mumps, rubella vaccine (latest doses due at 4 years of age). All vaccinations must have been administered by 60 months (5 years) of age.

The cohort of children assessed at 60 to <63 months of age on 31 December 2011 were born between 1 July 2006 and 30 September 2006 inclusive. To be considered fully vaccinated, these children must have received 4 valid doses of vaccines containing diphtheria, tetanus, pertussis antigens, 4 doses of poliomyelitis vaccine and 2 valid doses of measles, mumps, rubella vaccine (latest doses due at 4 years of age). All vaccinations must have been administered by 60 months (5 years) of age.

Interpretation

Immunisation coverage in NT children was below the national average for the 12 to <15 and 60 to <63 month cohorts and above the national average for the 24 to <27 months cohort. It is thought that the decline in coverage during this quarter for those in the 12 <15 months cohort is due to administrative delay which have now been resolved.

Immunisation coverage for Indigenous NT children was above the national Indigenous average in the 24 <27 months and 60 <63 months cohorts as well as being above the national average in the 60 to <63 months cohort. This may be related to increased resources that have targeted 4 year olds including a birthday card mail out to children turning 4 years of age in urban Darwin and Alice Springs.

Immunisation coverage for children aged 12-<15 months at 31 December 2011

<table>
<thead>
<tr>
<th>District</th>
<th>Number in District</th>
<th>%DTP</th>
<th>%Polio</th>
<th>%HIB</th>
<th>%Hep B</th>
<th>% MMRI</th>
<th>% Fully vaccinated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Darwin</td>
<td>278</td>
<td>87.1%</td>
<td>87.1%</td>
<td>86.7%</td>
<td>86.3%</td>
<td>86.3%</td>
<td></td>
</tr>
<tr>
<td>Winnellie PO Bag</td>
<td>87</td>
<td>92.0%</td>
<td>92.0%</td>
<td>92.0%</td>
<td>93.1%</td>
<td>92.0%</td>
<td></td>
</tr>
<tr>
<td>Palmerston/Rural</td>
<td>236</td>
<td>87.7%</td>
<td>87.7%</td>
<td>88.1%</td>
<td>87.7%</td>
<td>87.7%</td>
<td></td>
</tr>
<tr>
<td>Katherine</td>
<td>89</td>
<td>89.9%</td>
<td>89.9%</td>
<td>89.9%</td>
<td>89.9%</td>
<td>89.9%</td>
<td></td>
</tr>
<tr>
<td>Barkly</td>
<td>23</td>
<td>82.6%</td>
<td>82.6%</td>
<td>82.6%</td>
<td>82.6%</td>
<td>82.6%</td>
<td></td>
</tr>
<tr>
<td>Alice Springs</td>
<td>110</td>
<td>84.5%</td>
<td>84.5%</td>
<td>84.5%</td>
<td>84.5%</td>
<td>84.5%</td>
<td></td>
</tr>
<tr>
<td>Alice Springs PO Bag</td>
<td>81</td>
<td>87.7%</td>
<td>87.7%</td>
<td>87.7%</td>
<td>87.7%</td>
<td>87.7%</td>
<td></td>
</tr>
<tr>
<td>East Arnhem</td>
<td>60</td>
<td>88.3%</td>
<td>88.3%</td>
<td>88.3%</td>
<td>88.3%</td>
<td>88.3%</td>
<td></td>
</tr>
<tr>
<td>NT Total</td>
<td>964</td>
<td>87.7%</td>
<td>87.7%</td>
<td>87.7%</td>
<td>87.6%</td>
<td>87.6%</td>
<td></td>
</tr>
<tr>
<td>Indigenous</td>
<td>394</td>
<td>83.8%</td>
<td>83.8%</td>
<td>83.8%</td>
<td>84.0%</td>
<td>83.8%</td>
<td></td>
</tr>
<tr>
<td>Non-Indigenous</td>
<td>570</td>
<td>90.4%</td>
<td>90.4%</td>
<td>90.4%</td>
<td>90.4%</td>
<td>90.0%</td>
<td></td>
</tr>
<tr>
<td>Australia Indigenous</td>
<td>3,600</td>
<td>85.2%</td>
<td>85.2%</td>
<td>85.2%</td>
<td>85.2%</td>
<td>85.2%</td>
<td>85.1%</td>
</tr>
<tr>
<td>Australia Non Indigenous</td>
<td>71,835</td>
<td>92.7%</td>
<td>92.6%</td>
<td>92.6%</td>
<td>92.3%</td>
<td>92.2%</td>
<td>92.2%</td>
</tr>
<tr>
<td>Australia Total</td>
<td>75,435</td>
<td>92.3%</td>
<td>92.3%</td>
<td>92.1%</td>
<td>91.9%</td>
<td>91.8%</td>
<td></td>
</tr>
</tbody>
</table>

Immunisation coverage for children aged 24-<27 months at 31 December 2011

<table>
<thead>
<tr>
<th>District</th>
<th>Number in District</th>
<th>DTP</th>
<th>%Polio</th>
<th>%HIB</th>
<th>%Hep B</th>
<th>% MMRI</th>
<th>% Fully vaccinated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Darwin</td>
<td>269</td>
<td>249</td>
<td>92.9%</td>
<td>93.3%</td>
<td>92.6%</td>
<td>92.2%</td>
<td>91.4%</td>
</tr>
<tr>
<td>Winnellie PO Bag</td>
<td>94</td>
<td>89</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
<tr>
<td>Palmerston/Rural</td>
<td>195</td>
<td>187</td>
<td>95.9%</td>
<td>96.4%</td>
<td>95.9%</td>
<td>94.6%</td>
<td>94.4%</td>
</tr>
<tr>
<td>Katherine</td>
<td>84</td>
<td>80</td>
<td>95.2%</td>
<td>94.7%</td>
<td>94.7%</td>
<td>94.7%</td>
<td>94.4%</td>
</tr>
<tr>
<td>Barkly</td>
<td>19</td>
<td>18</td>
<td>94.7%</td>
<td>94.7%</td>
<td>94.7%</td>
<td>94.7%</td>
<td>94.7%</td>
</tr>
<tr>
<td>Alice Springs</td>
<td>131</td>
<td>126</td>
<td>96.2%</td>
<td>96.9%</td>
<td>96.2%</td>
<td>96.9%</td>
<td>95.4%</td>
</tr>
<tr>
<td>Alice Springs PO Bag</td>
<td>58</td>
<td>58</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
<tr>
<td>East Arnhem</td>
<td>63</td>
<td>60</td>
<td>95.2%</td>
<td>95.2%</td>
<td>95.2%</td>
<td>95.2%</td>
<td>95.2%</td>
</tr>
<tr>
<td>NT Total</td>
<td>908</td>
<td>867</td>
<td>95.6%</td>
<td>96.0%</td>
<td>95.5%</td>
<td>95.6%</td>
<td>95.6%</td>
</tr>
<tr>
<td>Indigenous</td>
<td>375</td>
<td>365</td>
<td>97.3%</td>
<td>97.6%</td>
<td>97.3%</td>
<td>97.3%</td>
<td>97.3%</td>
</tr>
<tr>
<td>Non-Indigenous</td>
<td>550</td>
<td>502</td>
<td>94.4%</td>
<td>94.9%</td>
<td>94.2%</td>
<td>94.6%</td>
<td>94.2%</td>
</tr>
<tr>
<td>Australia Indigenous</td>
<td>3,422</td>
<td>3,222</td>
<td>94.2%</td>
<td>94.9%</td>
<td>94.2%</td>
<td>94.4%</td>
<td>92.8%</td>
</tr>
<tr>
<td>Australia Non Indigenous</td>
<td>72,713</td>
<td>68,869</td>
<td>94.7%</td>
<td>95.0%</td>
<td>94.3%</td>
<td>93.9%</td>
<td>92.3%</td>
</tr>
<tr>
<td>Australia Total</td>
<td>77,043</td>
<td>72,958</td>
<td>94.7%</td>
<td>95.0%</td>
<td>94.3%</td>
<td>93.9%</td>
<td>92.6%</td>
</tr>
</tbody>
</table>

Immunisation coverage for children aged 60-<63 months at 31 December 2011

<table>
<thead>
<tr>
<th>District</th>
<th>Number in District</th>
<th>%DTP</th>
<th>%Polio</th>
<th>%HIB</th>
<th>%MMR</th>
<th>% Fully vaccinated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Darwin</td>
<td>272</td>
<td>85.7%</td>
<td>85.7%</td>
<td>85.7%</td>
<td>85.7%</td>
<td></td>
</tr>
<tr>
<td>Winnellie PO Bag</td>
<td>80</td>
<td>95.0%</td>
<td>95.0%</td>
<td>96.3%</td>
<td>95.0%</td>
<td></td>
</tr>
<tr>
<td>Palmerston/Rural</td>
<td>205</td>
<td>85.4%</td>
<td>85.4%</td>
<td>84.9%</td>
<td>84.9%</td>
<td></td>
</tr>
<tr>
<td>Katherine</td>
<td>83</td>
<td>85.5%</td>
<td>85.5%</td>
<td>84.3%</td>
<td>84.3%</td>
<td></td>
</tr>
<tr>
<td>Barkly</td>
<td>18</td>
<td>88.9%</td>
<td>88.9%</td>
<td>88.9%</td>
<td>88.9%</td>
<td></td>
</tr>
<tr>
<td>Alice Springs</td>
<td>106</td>
<td>88.7%</td>
<td>88.7%</td>
<td>88.7%</td>
<td>88.7%</td>
<td></td>
</tr>
<tr>
<td>Alice Springs PO Bag</td>
<td>50</td>
<td>96.0%</td>
<td>96.0%</td>
<td>92.0%</td>
<td>92.0%</td>
<td></td>
</tr>
<tr>
<td>East Arnhem</td>
<td>37</td>
<td>97.3%</td>
<td>97.3%</td>
<td>97.3%</td>
<td>97.3%</td>
<td></td>
</tr>
<tr>
<td>NT Total</td>
<td>851</td>
<td>88.0%</td>
<td>88.0%</td>
<td>87.7%</td>
<td>87.5%</td>
<td></td>
</tr>
<tr>
<td>Indigenous</td>
<td>345</td>
<td>91.3%</td>
<td>91.3%</td>
<td>91.0%</td>
<td>90.7%</td>
<td></td>
</tr>
<tr>
<td>Non-Indigenous</td>
<td>506</td>
<td>85.8%</td>
<td>85.8%</td>
<td>85.4%</td>
<td>85.4%</td>
<td></td>
</tr>
<tr>
<td>Australia Indigenous</td>
<td>3,055</td>
<td>86.9%</td>
<td>86.9%</td>
<td>87.2%</td>
<td>86.5%</td>
<td></td>
</tr>
<tr>
<td>Australia Non Indigenous</td>
<td>73,992</td>
<td>90.6%</td>
<td>90.6%</td>
<td>90.4%</td>
<td>90.1%</td>
<td></td>
</tr>
<tr>
<td>Australia Total</td>
<td>77,047</td>
<td>90.5%</td>
<td>90.4%</td>
<td>90.3%</td>
<td>89.9%</td>
<td></td>
</tr>
</tbody>
</table>
NT malaria notifications October—December 2011

Beatrice Akello-Zweck, CDC, Darwin

There were 3 notifications of malaria received this quarter. The following table provides details about where the infection was thought to be acquired, the infecting agent and whether chemoprophylaxis was used.

<table>
<thead>
<tr>
<th>No. cases</th>
<th>Origin of infection</th>
<th>Reason for exposure</th>
<th>Agent</th>
<th>Chemoprophylaxis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Indonesia</td>
<td>Student</td>
<td>P. falciparum</td>
<td>No</td>
</tr>
<tr>
<td>1</td>
<td>India</td>
<td>Immigration (resident)</td>
<td>P. falciparum</td>
<td>No</td>
</tr>
<tr>
<td>1</td>
<td>Iran</td>
<td>Refugee (resident)</td>
<td>P. falciparum</td>
<td>No</td>
</tr>
</tbody>
</table>

World Malaria Day 25 April 2012

Approximately half of the world's population is at risk of malaria, with those living in lower-income countries particularly at risk. Malaria infects more than 500 million people per year and kills more than 1 million. The burden of malaria is heaviest in sub-Saharan Africa but the disease also afflicts Asia, Latin America, the Middle East and even parts of Europe.

The Menzies School of Health Research (MSHR) malaria research program

The MSHR malaria research program, based in Darwin, spans a broad-range of research activities aimed at both prevention and treatment, from epidemiology through to pathophysiology, molecular parasitology, clinical trials, evaluation of the impact and cost-effectiveness of public health interventions. The program works on all 5 species of the Plasmodium parasite that cause human malaria, with a particular focus on the 3 that cause most disease and death in the Asia-Pacific region: falciparum, vivax and knowlesi malaria. The program focuses on better understanding Plasmodium parasites: the ways in which they become resistant to drugs, how they cause severe disease and death and how our immune system protects against malaria.

Through improved knowledge of these parasites, MSHR is identifying better ways to prevent and treat malaria in different environments, facilitating policy change and monitoring the impact of such change in the health of communities.

Over the last 10 years, MSHR has been working closely with Indonesian partners, policy makers, researchers and health care providers to define the burden of malaria and optimise treatment guidelines in the eastern province of Papua. The studies have confirmed the high levels of drug resistant in P. vivax and its association with severe and fatal malaria.

Severe malaria

In 2005 Menzies researchers joined a multicentre trial demonstrating that intravenous artesunate was more effective than quinine (the current treatment advised by World Health Organisation) for severe malaria, reducing mortality by 34%. This trial has defined WHO global policy as well as national policy for the treatment of severe malaria in Indonesia and Australia. Despite this major advance with antiparasitic therapy, mortality from severe malaria remains high. MSHR is undertaking trials of adjunctive L-arginine to increase nitric oxide and improve microvascular function in severe malaria.

Clinical trials in patients with uncomplicated malaria have defined the best treatment for local strains of drug resistant malaria, advocating a uniform policy for all species of malaria. Studies are ongoing to monitor the impact and cost effectiveness of this approach to malaria control.

For more information on the program go to http://www.menzies.edu.au/research/global-and-tropical-health/malaria

Important notice: Influenza vaccine for children

- CSL Biotherapies’ seasonal influenza vaccine Fluvax® is NOT registered for use in children under 5 years.
- There is also a ‘precaution’ for the use of Fluvax® in children aged 5 years to < 10 years.
- The recommendation in the NT is to use alternative influenza vaccines for children between 6 months and < 10 years of age, such as Vaxigrip®, Aggripal®, Fluarix® and Influvac®.

All healthcare workers are encouraged to be vaccinated against influenza. Personal protective measures such as handwashing and covering the mouth and nose when sneezing and coughing are important but vaccination against influenza is the best way to protect staff and patients.

THE NORTHERN TERRITORY DISEASE CONTROL BULLETIN
CUMULATIVE INDEX

Vol. 1 Nos. (1-10) to Vol. 19 No. 1 (Nov 1991 – March 2012)

‘About Giving Vaccines’ – An accredited course for vaccine providers

- An evaluation of the first four years 8(4)
- About Giving Vaccines. An accredited short course for vaccine providers 11(2)
- Small quality project report – ‘About Giving Vaccines’ 6(1)

Abstracts from peer reviewed published articles related to the Northern
Territory (18)

Enteric pertussis

- Ongoing NT funding 4(4)

Acquired Immunodeficiency Syndrome (AIDS)

- AIDS awareness week 9(4)
- Reporting 8(4)

Acute post-streptococcal glomerulonephritis (see glomerulonephritis)

Acute rheumatic fever 2(5); 5(4); 8(2)

- The Acute Rheumatic Fever/Rheumatic Heart Disease Program – an update 14(2)

Addendum to article on HTLV1 and Tuberculosis in Central Australian
Aboriginal people in the Bulletin 14 no 3, Sept 2005 pp 5-8 15(1)

After the earthquake in Java, Indonesia, March 28 – April 18 12(2)

Alcohol/G3: expansion & contraction 12(4)

- Alcohol taxation policy in Australia: public health imperatives for action 16(1)
- National alcohol policy after “stoppops”: what next? 16(2)
- The NT Government Alcohol Reforms: what do they mean for Primary Health Care? 18(1)
- Alcohol Misuse Interventions in the NT Primary Health Care: why and why now? 18(1)

Anaemia

- In Aboriginal children – Issues and Actions Workshop Mawatj Health Service, 15th June 2001 8(3)

An analysis of the impact of falls & falls prevention activities in the NT 5(1)

Antimicrobial resistance in health care settings 9(2)

Antiviral medication

- CD4 cell count: position statement on the use of antiviral medication for influenza (Pandemic H1N1 2009) 16(2)

Arbovirus infection

- An imported case of Chikungunya in the NT and a summary of the ecology of the disease 11(3)
- Chikungunya (Fact Sheet). 11(3)
- Reporting 3(1)
- Update 2(7)
- Potential in the Top End 3(1)
- Australian Encephalitis 18(2); 2(4)
- Outbreak in Central Australia 7(2)
- Cluster of encephalitis and meningitis in children in the Top End 7(2)
- Top End MVE cases 7(2)
- Burmese Forest 1(4)
- Summary 1991-1992 16(4)
- Summary 1994-2004 2(2)
- Ross River Virus 1(2); 4(1);
- Case reports 2(6)
- Dengue Virus 1(2)
- Case reports 2(6)
- Dengue mosquito incursion into Tennant Creek 2011 19(1)
- Kunjin virus disease encephalitis 17(4)
- The NT remains dengue mosquito free 17(4)

Ashdown’s medium [letter] 5(2)

Atlas of Health related Infrastructure in discrete Indigenous communities 9(2)

Avian influenza contact information and updates 11(2)

Azithromycin therapy

- NT 2(7)
- North West Queensland 3(2)
- Pilbara region WA 2(7)
- Restricting use in the NT 3(4)
- Reclassification to B1 drug in pregnancy 3(4)
- Trachoma 2(7), 4(1)

Australian Sentinel Practice Research Network 1(6)

Australasian Society for Infectious Diseases [Conference report]

- Annual Scientific Meeting; Broome, April 27-30 1996 3(2)

Bacterial antigen detection kits 5(1)

Barcoo rot 2(5)

Barmah Forest virus 14(2)

- Bats
- East African 3(4)
- Flying fox 7(2)
- Lyssavirus (see lyssavirus)

Bee-induced blisters in dermatitis 2(7)

Benznidazole Lrifilica GL (BPI) 2(6); 13(2)

- Beyond GAA to Healthy Under 5 Kids in the Bush 15(4)
- Bellilin AP 2(3)
- Bellilin LA 6(3); 9(1); 13(2)
- Bites to stings to the Top End and how to avoid them 12(2)
- Biting Midge of ‘Sandflies’ in the Northern Territory 10(3)
- Box jellyfish 1(3); 2(7); 5(3); 7(4); 9(4); 14(4); 15(4)
- Global warming – rising sea surface temperatures – a longer box jellyfish (Chironex fleckeri) stinger season for the Northern territory? 17(1)
- Blood culture collection [memorandum] 4(1)

Book Review: 11(2)

- `Banned` - drama production 2(7)

Breast cancer

- Breast Cancer Month and Pink Ribbon Day 8(3)
- BreastScreen NT 8(2)
- Incidence following round one mammography screening (Dec 1994-1997) 6(4)
- Investigation of the sudden increase in breast cancer deaths in the Northern Territory in 1999 9(3)

Campylobacter 16(6)

Candida familii: Fatal outcome following a "dog bite" 9(2)

Cardiovascular disease

- Treating lipids 4(1)
- Cardiovascular risk and cholesterol reduction 4(3)
- Aspirin 5(2)

Case finding and contact tracing – Fundamentals needed for good communicable disease control 9(2)

CDC: Preventing the transmission of diseases (less) 13(4)

Central line infection 1(9)

Cervical cancer

- Achievements in cervical cancer screening in the NT 8(3)
- Cervical cancer screening - Human Papilloma Virus Vaccination Program 14(1)
- Screening in the Northern Territory 7(4)
- Using Human Papillomavirus testing to monitor effectiveness of treatment of high grade intra-epithelial abnormalities of the cervix 12(3)

Chickenpox (see varicella)

Chikungunya disease 10(1)

Child care

- Ear project 4(4)
- Exclusions 1(3); 2(4)
- Factors affecting hepatitis A vaccination uptake among childcare workers in the NT 8(3)
- Immunisation records 2(4)
- Potential for disease outbreaks 2(6)

Child Health – New Child Health Team! 11(1)

Chlamydia (see sexually transmitted diseases)

Cholera

- Vibrios and liver disease are a dangerous combination. A case of fatal non-toxigenic Vibrio cholerae 12(4)

Chronic Diseases Network 4(2); 5(2)

Cigarettes 1(6); 5(4)

- Reporting of Cigarette Food Poisoning 13(3)
- Cigarettes (Fish Poisoning) - Fact sheet 15(4)

Climate change

- Climate change 15(4)
- Climate change: Why should health professionals care? 16(4)

Clinic 34

- Clinic 34 - on the move 10(4)
- Clinic 34 new location in Mitchell St 11(2)
- Clinic 34 survey 2004 11(4)

Is it a good move? A review of Darwin Clinic 34’s attendance data and
client profile in relation to relocation to the CBD 12(4)
Closing the gap
Closing the gap - targets for indicator diseases 15(4)
Closing the gap - the challenge 15(4)
COAD
Clinical management and continuity of care COAD project 4(4)
Recent guidelines and local initiatives 9(1)
Cockroach control in the NT 6(1)
Coccolid Disease - Diarrhoea - when it is non-infectious 11(3)
Cold chain 1(1); 27(1); 9(1); 8(2)
Community education
The invisible and unknown battle 7(4)
Congenital syphilis
Revised guidelines for the investigation and treatment in the Top End of the NT 5(4)
Congenital syphilis: revised protocol for management and re-establishment of follow-up register in the Darwin region 12(3)
Counter Disaster
Public Health Group - Region 1: Counter Disaster Plan (2007) 14(4)
Coxackievirus B 2(1)
Cryptosporidium
Alice Springs 26(1)
Cryptosporidiosis: will it happen this wet season? 9(4)
East Arnhem 6(4)
Darwin 8(1); 10(2)
Outbreak in Darwin and Palmerston 9(1)
Dangers of drugs circulated as “enhancing sexual function” or “herbal viagra” 15(4)
Dengue
Dengue Fever 1(7)
Case reports 2(5)
Community can help eliminate dengue mosquitoes in Tennant Creek. Media release 18(4)
Dengue mosquito eradication on Groote Eylandt - Fact sheet 13(4)
Dengue Mosquito eradication on Groote Eylandt 15(2)
Dengue 3 in Cairns 4(6)
Groote Eylandt remains dengue vector free 16(1)
Letter to the editor NT News 16(1)
Public health and interpretation of serology results 7(1)
Increase in Dengue Fever notifications in visitors to East Timor 7(1)
Information sheet 7(1)
Northern Territory is dengue virus and dengue fever free. Has been since the 1950s 12(2)
Notification reminder to clinicians 7(1)
Dengue fever in northern Australia - a bit of history 17(4)
Diabetes
Control and Complications Trial 3(2)
New diagnostic criteria and NT AusDiab results 8(1)
Diphtheria 14(5); 2(5)
Guidelines for the control of diphtheria in the NT 5(2)
Disaster management
After the earthquake Nias, Indonesia. March 28- April 18 12(2)
Cleaning up floodwater 14(1)
Disaster management 5(1)
Infection control and waste management at the Zainod Abidin Hospital, Bandar Aceh, April 2005 12(2)
Reopening a hospital in Bandar Aceh 12(3)
The Aceh response - a personal account 12(2)
Disease Control staff updates (each issue)
Donovanosis
Azithromycin trial 2(2)
Azithromycin in NW Queensland. 3(2)
Drowning related deaths in the NT with alcohol involvement 16(4)
Drug resistance
Antimicrobial resistance in health care settings 9(2)
VRE or not VRE - "always ask twice... or thrice..." 9(2)
East Timor
A volunteer doctor in East Timor 15(2)
East Timor AusAID Mosquito Project 13(3)
Evacuees in Darwin, September 1999 6(3)
Evacuees in Darwin, 1999 7(2)
Measles outbreak amongst evacuees in Darwin, 1999 7(3)
NT assists with leprosy survey in Timor 16(1)
Echovirus type 30 meningitis 2(1)
Editorials
Editorial on measles. Everyone needs to be immune 18(4)
For A Case of Plasmodium Ovale 12(4)
Gearing up to protect our children 14(2)
RHD Control Program 18(1)
Updated Leprosy Guidelines 18(1)
Effluent outfall (see Environmental Health)
Eline Jones AM 11(2)
Enteric disease (see Outbreaks, Salmonella)
Burge Belly. A gastrointestinal illness outbreak on a burge at sea 11(3)
Campylobacter 16(6); 14(3)
Case investigation 16(6); 19(2); 27(1)
Considerations around an increase of Salmonella Muggani notifications in the Top End 9(2)
Cryptosporidiosis 9(4); 19(2)
Enteric diseases in the NT 11(2); 11(3)
Gastroenteritis [brief report] 6(2); 10(2)
Gastroenteritis in Aged Care Facilities 14(3)
Gastroenteritis Outbreak at Workshop 13(3)
Gastroenteritis outbreak due to Staphylococcus aureus 10(3)
Gastroenteritis outbreak due to Salmonella 10(4)
An investigation of a cluster of Salmonella Oslo cases 14(3)
Northern Territory OzFoodNet Highlights for 2005 13(2)
NT OzFoodNet Highlights for 2003 11(1)
NT Quarterly report 10(2); 10(3); 10(4)
Outbreak of gastrointestinal illness at a remote mine site 12(1)
Outbreak of norovirus gastrointestinal illness at Robertson Barracks 13(2)
Rotavirus 2(2)
Summary 1991 16(5)
Salmonella Ball outbreak in the NT, May-June 2002 9(3)
Salmonella Paratyphi B var Java in a child and their pet turtle 14(3)
The Northern Territory OzFoodNet Site - A Summary of 2006 16(1)
What is environmental Salmonella? 12(4)
Hafnia alvei a possible cause of gastroenteritis? 17(4)
Norovirus outbreak in school travelling through Central Australia 18(2)
Environmental Health
Environmental Health Fact Sheet. Fly control 18(4)
Environmental Health Officers, role of 1(10)
Environmental Health Program 2003/2004 11(3)
Fecal & Other Body Fluid Accident Policy: Action to be taken following contamination 11(2)
Food Bill 2003 11(1)
Fly control. Environmental Health fact sheet
Guidelines for the Design, Operation, Management and Maintenance of Aquatic Facilities 13(2)
Hazardous Foods - Cooling and Reheating 13(2)
Information for food handlers 13(2)
Information for Naegleria fowleri 12(3)
Naegleria fowleri in the Darwin water supply 12(3)
Public health legislation update 12(2)
Salmonella species in Fresh Produce - an emerging food safety issue for the NT 14(3)
Signage of Effluent Outfall Dispersal Zones - Buffalo Creek and East Point, Darwin 15(1)
Standard Operating Procedure - for Environmental Health Response to Water Quality Failures 15(1)
15 food safety tips for the Christmas season (or any time of year) 19(4)
Erythema infectiosum (Fifth disease) 19(2)
Eulogy to Dr John Bullen 13(4)
Eulogy to Ellen Kettle (1922-1999) 6(3)
Erratum: Dates, damned dates and statistics!! A final word on reporting dates, with apologies to Katherine CDC 9(5)
Evidence for a sharp decrease in gonococcal cultures and its implications for the surveillance of antimicrobial Sensitivity 16(3)
Fecal & Other Body Fluid Accident Policy: Action to be taken following contamination 11(2)
Fact sheets
Australian Bat Lyssavirus 10(4)
Campylobacteriosis 14(3)
Chickens and chickens (varicella zoster virus) - Fact sheet 15(3)
Chikungunya 11(3)
Chloromene fletcheri (Box Jellyfish) 14(4)
Ciguatera (Fish Poisoning) 15(4)
Clearing up floodwater 14(1)
Dengue 7(1); 17(5)
Dengue mosquitos on Groote Eyland 13(4)
Diphtheria 17(2)
Disease 10(3)
Donovanosis 11(4)
Fifth disease (erythema infectiosum) 10(2)
Food Safety—Hazardous Foods—Cooling and Reheating 13(2)
Food safety tips for Christmas 13(4), 18(4)
Fly control: Environmental Health Fact Sheet 18(4)
Guidance on use of rainwater tanks in the NT 19(1)
Hand Foot and Mouth
Hepatitis A 12(4)
How National Immunisation Program Changes will affect NT childhood
Vaccination Schedule, November 1, 2005. Information for providers 12(3)
Information for food handlers 13(3)
Legionella 14(2)
Leprosy 13(1)
Malaria 11(2)
Melioidosis 16(4) 19(1)
Murray Valley Encephalitis 18(1)
Non-healing ulcers including those caused by non-tuberculous mycobacteria (NTM) 14(1)
Noro virus 13(2)
Pertussis (Whooping cough) 15(1)
Scabies 17(1)
Strongyloides fact sheet 18(2)
Two-step Mantoux testing 10(2)
Trachoma 17(4)
Vaccine safety for adolescent girls 12(3)
Vibrio bacterial disease 13(5)
Fetal alcohol syndrome in Australia 7(3)
Firework related injuries 5(3), 8(3); 9(3); 10(3); 13(3); 14(3), 15(20), 15(3), 16(3), 17(3), 18(3)
Beyond the burns: effects of firework related injuries 16(3)
An analysis of opinions published in the NT news on the use of fireworks
surrounding Territory Day 17(3), 18(3)
Letter to the Editor 11(2) 16(3) 17(3)
Haemophilus influenzae type b
Carriage in Aboriginal infants 3(4)
Case reports 1(3), 6(2)
Epidemiology 10(9)
Evaluation of vaccine campaign 1(10); 2(4)
Haemophilus influenzae type b (Hib) carriage in Northern Territory children 18(4)
Incidence of invasive Hib disease in the NT 5(1)
Vaccination program 14(7), 19(9)
Hand, foot and mouth disease 16(6)
Fact sheet 10(3)
Handwashing
No Germs on Me - Hand Washing Campaign 15(3)
Head lice 3(2) 17(3) 18(2)
Hepatitis A
Factors affecting Hepatitis A vaccination uptake among childcare workers in the NT 8(3)
Hepatitis A Alert 12(4)
Hepatitis A: Fact sheet 12(4)
Hepatitis A: Nearing elimination in the NT following immunisation of
Indigenous children 7(3)
Hepatitis A outbreak in Central Australia 12(4)
Hepatitis B
Editorial 13(1)
Hepatitis B screening among women birthing in Alice Springs Hospital, and
immunisation of infants at risk 14(2)
Notifications 2(4)
Provision of free paediatric hepatitis B vaccine to GPs 4(1)
Public health management guidelines 5(2)
Retrospective audit of immunoglobulin and vaccine uptake in infants at
risk of perinatal transmission of Hepatitis B virus 13(1)
School Age Program, NT 6(2.3)
School Age Program, Operations North 5(2)
Vaccination and health care providers 5(2), 7(3)
Vaccination policy in the NT 4(4)
Vaccination program at Clinic 34, Darwin 6(1)
Vaccination schedule change 1(7)
Hepatitis C
An update on Hepatitis C in the NT 12(4)
An update on the hepatitis C landscape in the NT 11(2)
Case register 2(1)
Clinical aspects 1(10)
Community awareness campaign 4(3)
Editorial: Hepatitis C 11(2)
Enhanced surveillance 7(2)
Hope for hepatitis sufferers 19(4)
Interferon 2(4)
Introducing hepatitis C enhanced surveillance in the Northern Territory 13(2)
Management 2(3)
New treatments for hepatitis C virus: the future is now 18(4)
Notification 1(5), 2(2)
NT prison population 6(1)
Perinatal transmission 1(6)
Support group 26(7)
Hepatitis E: Case report 2(1)
Herbal viagra 15(4)
Histamine fish poisoning (Scombroid) incident – Darwin 7(2)
The Northern Territory Disease Control Bulletin Vol 19, No. 1, March 2012

Human Immunodeficiency virus (HIV)

Aboriginal population 1(n)
Acquired Immunodeficiency Syndrome (AIDS) reporting 8(4)
Antenatal screening 18(2)
HIV/AIDS guide for Kimberly health professionals 5(2)
HIV and AIDS in the NT (1985-2000) 8(4)
HIV and travel campaign 17(2)
HIV newly diagnosed infection in the NT 2008-2009 9(4)
Indications for testing 3(4)
Non-occupational exposure prophylaxis-nPEP 10(2)
NT HIV/AIDS report 7(4)
Reporting 8(4)
Routine HIV screening: is it feasible for Australians? 14(1)
Sex in the city, Young Women's HIV Awareness Campaign 9(4)
The Territory two step - enhancing detection of latent Mycobacterium Tuberculosis in HIV clients 11(3)
Update on HIV and hepatitis C virus in the NT 5(1)

Human papilloma virus (see immunisation)

Human papilloma virus (see Sexually transmitted disease)

Immunisation (also see specific diseases)

9th Edition of The Australian Immunisation Handbook 4th Edition of Myths and Realities have been officially launched 15(1)
About Giving Vaccines. An accredited short course for vaccine providers 11(2)
Adult [review of article] 2(5)
Adult immunisation campaign 3(1)
Adult Immunisation Schedule July 2011 15(3)
Adult and Special Groups Vaccination Schedule January 2012 12(1)
An alert system is already in place! A further response to editorial on "Retrospective audit of immunoglobulin and vaccine uptake in infants at risk of perinatal transmission of hepatitis B virus" 13(2)
Attention all health care workers 7(3)
Australian Immunisation Handbook 8th edition 2003 10(3)
Adult immunisation - new initiatives for 1999 5(4)
BCG complications - Alice Springs 2(5)
BCG complications - a review 5(3)
BCG availability - new vaccine policy in the NT 7(4)
Review of BCGs given to babies born in Adelaide to women transferred from Alice Springs Hospital 14(1)
Choke trip with a 'snooz' 6(3)
Changes to the NT Childhood Vaccination Schedule 3(3), 9(2), 15(3)
Changes to the Australian and NT Vaccination Schedules 7(1)
Change to northern territory childhood vaccination schedule 1 October 2009 16(3)
Change to the Northern Territory Childhood Immunisation Schedule to introduce 13 valent pneumococcal vaccine 1 October 2011 18(3)
Childhood immunisation coverage and timeliness in the NT 16(2)
Childhood immunisation internal site 15(2)
Childhood immunisation uptake: Part 1 - Top End 4(1)
Childhood immunisation uptake: Part 2 - Central Australia 4(2)
Childhood Vaccination Schedule 2008 15(3)
Cold chain 1(1)
"Commemoration for excellence" - Jenner award 4(1)
Coverage rates 1294 2(5)
Coverage of children 12-14 months in real time 4(4)
Coverage in Darwin Urban area 3(1)
Coverage in NT for two birth cohorts as of 30 June 2000 7(3)
Coverage - third quarter assessment to 30 Sept 1997 5(2)
Coverage - NT 8(4), 14(1), 14(2)
Coverage - Combined analysis of two ACIR cohorts of NT children aged 12-15 months 9(2)
Custom designed vaccine refrigerator trial 8(1)
Declaration of status 2(8)
Don't give MMR, or Pedvax HIB booster doses too early 7(3)
Evaluation of vaccine campaign 2(4)
Effect of conjugate Hib vaccines on the incidence of invasive Hib disease in the NT 5(1)
Extension to indications for Human Papillomavirus Vaccine (Gardasil 8) 17(4)
Flu shots for health staff 4(2), 5(4)
General practice 2(4)
Haemophilus influenzae type b 14(7,9,10), 20(4), 18(4)
Hepatitis A 2(3,4), 3(2), 6(4), 12(2)
Hepatitis B 1(7)
Hepatitis B screening among women birthing in Alice Springs Hospital, and immunisation of infants at risk 14(2)
How National Immunisation Program Changes will affect NT childhood Vaccination Schedule 12(3)
How to apply for free acellular pertussis vaccine 4(1)
Human papilloma virus
Cervical cancer vaccination - Human Papilloma Virus Vaccination Program launched 14(1)
Update on the HPV program and National HPV register 15(3)
Influenza vaccination (2008) 15(1)
Flu shots for health staff 4(2), 5(4)
Influenza immunisation of doctors at the Royal Darwin Hospital, 2007: immunisation rate and factors contributing to uptake 14(4)
Influenza vaccination (2008) 15(1) 16(2)
Influenza vaccination poster - Make sure you are protected against the flu 16(2)
NT provides free seasonal influenza vaccine for all pregnant women 16(2)
Tennant Creek: influenza vaccination program 12(2)
2011 Flu vaccine — gearing up for good coverage rates 17(4)
2011 Seasonal Influenza Vaccine Program 18(1)
Investigation of Meningococcal Vaccine Failure 15(2)
Influenza 1(1), 2(3,6,7), 5(1), 19(1)
Immunisation Audit Health Clinic 14(1)
Immunisation Australia 4(3)
Immunoglobulin 1(1)
Immunisation 'database' 3(1)
Immunisation tidbits 6(3)
Immunisation update 6(4), 10(2), 10(3)
Immunisation coverage, NT (teach issue) 11(3)
Immunisation newsletter: Commonwealth changes to maternity immunisation allowance and family benefit tax 18(4)
Immunisation catch-up schedule for newly arrived refugees in the NT 18(3)
Impact of 1996 campaign 4(1)
Japanese Encephalitis 16(6)
Maternal influenza vaccination: Protecting the mother and the infant 19(1)
Measles 1(2,4), 2(4), 5(2), 7(1), 7(3), 18(4)
Measles, mumps vaccination history in the Northern Territory 15(4)
Meningococcal C School Based Vaccination Program 2004 11(3)
Meningococcal vaccine
Mumps, Immunisation coverage 14(3)
Mumps in the NT 15(4)
New conjugate meningococcal C vaccine 9(1), 10(1)
New Commonwealth funding for hepatitis A vaccine for Indigenous children 12(2)
New Commonwealth funding for varicella vaccine and inactivated polio vaccine 12(1)
NT Adult and Special Groups Vaccination Schedule 7(1)
NT Standard Childhood Vaccination Schedule 1/5/2000 7(1)
NT provides free seasonal influenza vaccine for all pregnant women 16(2)
Northern Territory Human Papillomavirus Vaccination Program update 15(1)
NT Immunisation Register: towards a whole of life vaccine record 18 (2)
November 2005 Immunisation schedule changes – What's happening 12(4)
Ongoing NT funding for DTaP 15(4)
Paracetamol can it decrease the effect of vaccines? 16(4)
Pandemic (H1N1) 2009 influenza vaccination uptake 16(4)
Pertussis 17(1), 2(4), 4(3), 8(4), 15(6)
Pneumococcal 2(8)
Review of adult pneumococcal vaccine database 9(4)
Conjugate pneumococcal vaccine 9(2)
Conjugate pneumococcal vaccine coverage 8(4), 10(2)
Feasibility study for the NT Pneumococcal Vaccine Trial 7(1)
What's new for prevention of invasive pneumococcal disease? 8(1)
Universal pneumococcal vaccination program for 2005 11(4)
Pneumovac 23® Revaccination Guidelines 2012 19(1)
Poliio 2(8), 9(2)
Pre-vaccination survey of RDH health care workers on attitudes and barriers to the new pandemic (H1N1) 2009 influenza vaccine 16(4)
Promotion activities in Alice Springs 4(1)
Provision of free paediatric hepatitis B vaccine to GPs 4(1)
Rabies immunoglobulin 15(4)
Recent PBAC Recommendations regarding Human Papillomavirus vaccine 19(1)
Rotavirus
Introducing Rotavirus Vaccine in the Northern Territory (NT) 14(1)
Rotavirus immunisation audit in a remote community 14(1)
An estimate of rotavirus vaccine efficacy following an outbreak of rotavirus gastroenteritis in Central Australia 15(3)
Rotavirus Vaccine introduced in the NT 13(3)
Royal College Australian and New Zealand College of Obstetricians and Gynecologists Statement about influenza vaccine 19(1)
School Age Program, NT 6(2,3)
School Age Program, Operations North 5(2)
School entry records 2(4)
Small quality project report — ‘About Giving Vaccines’ 6(1)
Status of children 0-6 years in Alice Springs 5(2)
Tetanus 11(6, 6(3)
Vaccination and health care providers 1(2)
Vaccination coverage (each issue commencing 13(2)
Vaccination issues 6(2)
Vaccination policy in the NT 4(4)
Vaccination program at Clinic 34, Darwin 6(1)
Vaccination schedule change 1(7)
Vaccination Schedule, November 1, 2005 12(3)
Vaccine safety for adolescent girls 12(3)
Varicella vaccination 9(3)
Varicella vaccine workshop, Melbourne, Dec 1999 6(4)
Voluntary documentation 3(1)
Immunosuppression
Prevention of opportunistic infections in immunosuppressed patients in the tropical Top End of the Northern Territory 11(1)
Indigenous Community Housing Survey (NT) 11(4)
Indigenous health indicators
Closing the gap — targets for indicator diseases 15(4)
Closing the gap — the challenge 15(6)
Infection control and waste management at the Zaino Muhammad Hospital, Banda Aceh, April 2005 12(2)
Informatics! — It should be contagious 16(1)
Influenza
A summary of influenza 2009 in the Northern Territory 17(1)
Australian management plan for pandemic influenza 12(2)
CDNA position statement on the use of antiviral medication for influenza (H1N1) 2009* 16(2)
Flu shots for health staff 4(4, 5(4)
Hong Kong ‘bird flu’ 4(4)
Influenza immunisation of doctors at the Royal Darwin Hospital, 2007: immunisation rate and factors contributing to uptake 14(4)
Influenza report 14(3)
Influenza season 2007: bad, but not that bad 14(4)
Influenza Surveillance 2(1), 2(8), 3(2), 5(2), 11(2), 12(1)
Influenza vaccination 2008 15(1), 16(2)
More on Flu: News on the seasonal influenza vaccine 2010 17(1)
NT provides free seasonal influenza vaccine for all pregnant women 16(2)
Outbreaks 2(3, 6, 3(4), 7(4)
Options for Control of Influenza III: Cairns 4-9 May 1996 [Conference report] 3(2)
Tennant Creek influenza vaccination program 12(4)
The early experience of pandemic (H1N1) 2009 influenza in the Northern Territory, Australia 16(2)
The epidemiology of laboratory confirmed influenza in the NT 2001-2007 15(2)
The epidemiology of the pandemic (H1N1) 2009 influenza in the Northern Territory, June-September 2009 16(3)
Summary of influenza 2009 in the Northern Territory 17(2)
Influenza vaccine in pregnant women and children under 5 years of age 17(2)
Injection equipment
Disposal of used injecting equipment in the Northern Territory 14(3)
Injury Prevention and control
An analysis of public hospital admissions for water related injuries in the Northern Territory, Australia 2002-2006 14(2)
Water related injury hospitalisations in the Northern Territory 1999-2008 17(2)
An analysis of impact of falls & falls prevention activities in the NT 15(1)
Injury Prevention a National Plan for consultation and moving forward in the NT 15(1)
Injury Prevention and control; Brisbane, May 1999 [Conference report] 6(2)
Injury prevention and safety promotion in the NT: Safe Communities 11(4)
Firework related injuries 9(3), 15(3)
Firework-Related Injury Community Survey Report 2009 16(3)
Palmerston Safety Survey 2006: home safety, perceptions of community safety and experiences of injury 14(4)
Too many road crashes involving young drivers. Time for changes to our licensing systems and driver education strategies 12(2)
Falls hospitalisation in the NT 1999-2008: the basis of need for a comprehensive falls prevention strategy 17(4)
Interferon
Hepatitis C 2(4)
Intestinal parasites
Pilot screening program 4(1)
Deworming protocols [editorial] 4(1)
Intussusception
Acute intussusception in infants and children in the Northern Territory. Report for the study period 1 June 2006 - 31 May 2008 15(2)
Intussusception in the Northern Territory: Report from a 3-year prospective surveillance system 13(4)
Iron deficiency in Aboriginal children in the NT 8(3)
Jellyfish 1(3), 2(7), 5(3), 7(4), 9(4)
Kava drinking 3(4)
Kava liver toxicity and kava ‘fits’ 9(4)
Laboratory
Reopening a hospital in Banda Aceh 12(3)
Latent Tuberculosis Infection (LTBI)
Preventive treatment and follow-up of contacts 2(5)
Two-step Mantoux testing 10(2)
Legionella Fact sheet 14(2)
Legionella
Legionella an overview in the context of an emerging pathogen in Top End wildlife 10(4)
Leprosy
Case reports 1(10, 3(1), 3(2)
ELISA test 3(1)
Elimination 6(2)
Indonesia 2(1)
Leprosy Fact sheet 15(1)
Leprosy in the Northern Territory (NT): A descriptive epidemiological study of certified cases from 1991 to 2004 12(2)
Leprosy—Still Present in the NT 13(1)
NT assists with leprosy survey in Timor 16(1)
Risk of relapse of multibacillary leprosy after multi-drug therapy 8(2)
Update on control in the NT 6(2)
World leprosy day 2010 16(4)
Updated guidelines for the control of leprosy in the NT 18(1)
Leptospirosis 1(7)
A case of Leptospirosis caused by Leptospira tarassovi acquired in the Northern Territory 11(2)
Editorial- Leptospirosis in the Northern Territory: Hunter beware! 11(3)
Leptospirosis in the Top End: an investigation into the occupational risk to crocodile handlers 11(3)
Leptospirosis Update 8(3)
Leptospirosis in dogs 8(1)
Two cases of Leptospirosis diagnosed in Royal Darwin Hospital 7(4)
Leptospirosis: an occupational hazard for crocodile egg collectors 18(1)
Letter to the Editor
Enteric diseases in the NT: June 2004 11(3)
Diphasyphus martinius 14(2)
Lyssavirus
Bat chat from East Arnhem 3(4)
Flying fox alerts 7(2)
NT retrospective search for lyssavirus in humans 4(2)
Update 4(4)
Post exposure prophylaxis flowchart 6(3)
Prevention strategy update 4(4), 6(2), 7(2)
Australian Bat Lyssavirus - Fact sheet 10(4)
Australian Bat Lyssavirus in the NT 2000 — 2002: and overview of exposure and treatment 10(4)
Malaria
A Case of Plasmodium ovale 12(4)
An audit of malaria management in the Top End 10(3)
Case reports 1(4), 6(3)
Epidemiological data 5(3)
Imported malaria cases at the Northern Immigration Detention Facility, Berriyah, NT: Risk assessment and recommendations 13(4)
Imported malaria case investigation and precautionary vector control: Leanyer, Darwin March/April 2011 18(3)
Malaria Guidelines for Health Professionals in the NT 2007 14(1)
Malaria Protocol Guidelines for Health Professionals in the Northern Territory - 4th ed June 2004 11(2)
Public health response to an imported case 6(3)
Malaria Fact sheet 11(2)
NT Notification in each issue
Receptive area in NT 2(6)
Revision and review of NT protocol 6(3)
Student (overseas) screening protocol 2(1)
Surveillance 1(8), 2(1)
Thinking of walking the Kokoda Trail? Take note! Malaria in Kokoda Trail walkers 14(1)
Travelling 2(8)
Vivax malaria: prevention and treatment not always straightforward 14(1)
Manonagro phy screening 6(4)

Memes
Association with Crohn’s disease and autism 5(1)
Case reports 1(4,5,6,8), 18(4)
Control measures for contacts 2(7)
Differential diagnosis 1(2)
Enhanced mems control campaign 5(2);
(7)
Management in Central Australia 3(3)
Memes awareness 13(1), 18(4)
Memes, mumps vaccination history in the Northern Territory 15(4)
Notifications 1991 - 1999: implications for policy development 7(3)
Outbreaks 1(2,4), 2(3,4), 3(4), [brief report] 6(2) 18(4)
Outbreak amongst East Timorese evacuees in Darwin, 1999 7(3), 7(4)
Points of correction/clarification further information regarding the mems articles in the previous issue of the Bulletin 7(4)
Protocol for hospitals 2(2)
Working together to beat mems 7(3)

Medical Entomology
A Territory Health Service survey of Dili, East Timor and public health implications 8(3)
A year of mosquito monitoring at Robertson Barracks and the nearby Millner Swamp, NT 18(2)
Aedes aegypti mosquitoes, vectors for dengue, found in Tennant Creek: Elimination Campaign in Progress 11(1)
Aerial mosquito control of Barampa swamp 17(2)
An import case of Chikungunya in the NT and a summary of the ecology of the disease 11(3)
Another exotic mosquito interception at Frances Bay port, Darwin, January 2011 18(2)
Bits and stings in the Top End and how to avoid them 12(3)
Biting Midges or “Sandflies” in the Northern Territory 16(3)
Community can help eliminate dengue mosquitoes: Tennant Creek 18(4)
Dengue: dengue eradication project Tennant Creek: End of January 2005 progress report 12(1)
Dengue mosquito incursion and the eradication program on Groote Eylandt NT 14(3)
Dengue mosquitoes on Groote Eylandt 13(4)
Dengue Mosquito eradication on Groote Eylandt 15(2)
Detection and elimination of Aedes albopictus on cable drums at Perkins Shipping, Darwin, NT - April 3 2007 14(3)
East Timor Aids Aid Mosquito Project 13(3)
Exotic mosquito incursions and the risk of vector-borne disease in Block 4, Royal Darwin Hospital campus, Darwin, Australia, 2005 07 14(4)
Exotic mosquitoes detected in cargo at East Arm Port area 10(2)
Exotic mosquitoes detected in tyres at east Arm Wharf, Darwin, NT, 13th December 2003 11(3)
Federal Government moves to reduce dengue fever threat 11(2)
First record of the mosquito species Aedes (Aedonomia) notatum (Theobald) (Diptera: Culicidae) in Australia 11(2)
Guidelines to prevent fly breeding in domestic situations in the Top End 8(1)
Groote Eyland remains dengue vector free 16(1)
Imported malaria cases at the Northern Immigration Detention Facility, Berrimah, Northern Territory - Risk assessment and recommendations 13(4)
Initial survey of underground mosquito breeding sites in Darwin NT 10(3)
Interceptions of Aedes aegypti and Aedes albopictus in the port of Darwin, NT, Australia, 25 January and 5 February 2010 17(1)
Interim report to the National Arbovirus and Malaria Advisory Committee on the detection of exotic mosquitoes in tyres at Perkins Shipping, Darwin, Northern Territory on 12 May 2006. 13(2)
Letter to the editor NT news 16(1)
Lot 5646 Town of Darwin Mosquito breeding in the upper tidal reaches of Ludmilla Creek 16(2)
Medically important insects in the NT and how disasters affect them 10(1)
Mosquito-borne disease warning for the Top End of NT, 28 March 2011 15(1)
Mosquito borne diseases in the NT: A historical overview 18(2)
Mosquito borne virus warning 5(2)
Mosquito control and the Katherine flood April 2006 13(2)
Mosquito control at Hickey’s Lake, Katherine, NT 9(3)
Mosquito control in Barampa Swamp – A big step forward 9(1)
Mosquito Control in Leanyer Swamp 14(2)
Mosquito investigations 1(4)
Mosquito vector control in the Northern Territory 14(2)
My mosquito run 18(2)
Northern Territory is dengue virus and dengue fever free. Has been since the 1950s. 12(2)
NT Medical Entomologist Ipswich flood relief trip 18(1)
NT Mosquito borne disease alert for March to June 2011 18(1)
Personal mosquito protection while overseas 15(1)
Personal protection from mosquitos & biting midges in the NT 11(2)
Role of 18(1)
Recommended interim water receptacle treatment for exotic mosquitoes on international foreign fishing vessels arriving in Australia 13(2)
Recommended water receptacle treatment for exotic mosquitoes on foreign fishing vessels arriving in Australia 12(2)
Rectification and control practices in a major salt marsh mosquito breeding site, Darwin, NT 9(4)
Red imported fire ant 8(1)
Red imported fire ant still threatens the NT 10(1)
Ross River virus and Barmah Forest virus disease cases in NT in 2006/2007 14(2)
Salt marsh mosquito larval control in the Leanyer coastal wetland, Northern Territory 17(1)
Screw worm 8(1)
Sentinel Chicken Program results in the Top End of the NT 14(2)
Severe skin reactions from the sap of NT tree Diospyros martensii Blume 14(1)
Timor-Leste AusAID Mosquito Project – an update 13(3)
Update on the Aedes aegypti mosquito eradication campaign in Tennant Creek, NT 11(2)
What is driving salt-marsh mosquito peaks in Darwin: tides or rainfall? 18(1)

Medical Vectors: 6 lessons 9(4)
Melioidosis 17(7); 5(4)
Case reports 1(3), 8(1)
El Nino effect 4(3)
Kava drinking 3(4)
Melioidosis in the Top End 12(4)
Melioidosis in the NT 2009 16(4)
Summary 1990-91 wet season 11(1)
Summary 1993-94 wet season 2(1)
Summary 1994-95 wet season 2(6)
Summary 1995-98 wet season 5(1)
Treatment and control 1(10), 2(8), 9(4)
Top End prospective study continues and an update on treatment guidelines 7(4)
A dry wet season results in fewer Top End cases 9(1)

Meningococcal disease
A case of meningococcal eye disease 5(1)
A multi-jurisdictional response to a sporadic case of meningococcal disease in an overseas tourist 15(3)
Central Australia 1998 6(2)
Investigation of Meningococcal Vaccine Failure 15(2)
Meningococcal contact tracing 13(4)
Meningococcal disease in the NT between 1991 and 2000 8(4)
Meningococcal disease –2 cases in August 1997 4(3)
New conjugate meningococcal C vaccine 9(1)
Survelliance in the NT 5(1)

Meningitis
Coxsackievirus B 2(1)
Echovirus type 30 2(1)
Guidelines for meningococcal meningitis/septicemia chemoprophylaxis 4(4)
Meningococcal 1(4,5,6), 2(7); 4(3); 5(1) 11(3)
Viral 1(6), 14(4)

Men’s health
Report on Men’s Health Week at Community X, Dec 1998 6(1)
Report on Men’s Health Screening at Community W, May 1999 6(3)
Report on Men’s Health Week at Community Z, June 1999 6(3)
Program at Gapauiyik 6(3)
Well men’s check 8(3)

Mosquitoes (see Medical Entomology)
MRSA
MRSA trends 2(8)
The emerging problem of community-associated MRSA; Necrotising pneumonia in a 19 month old Aboriginal boy 15(2)

Mumps in the NT 15(4)
Measles, mumps vaccination history in the Northern Territory 15(4)

Ngaelia fowlieri
Ngaelia fowlieri in the Darwin water supply 12(3)
Information on Ngaelia fowlieri 12(3)

Narcolepsy and abuse in the NT (Conference report) 2(6)
National Immunisation Awards 9(4)

Needle and syringe programs in the NT – snapshots 7(2)
A return on investment 17(3)

Neonatal group B streptococcal disease 2(4)
Neurological disease in a cat 8(2)

Non-communicable diseases
Clinical management and continuity of care COAD project 4(4)
Update No. 1 Control and Complications Trial 3(2)
Update No. 2 Cardiovascular disease and treating lipids 4(1)
Update No. 3 Cardiovascular risk and cholesterol reduction 4(3)
Update No. 4 Hypertension control 5(1)
Update No. 5 Aspirin and cardiovascular disease 5(2)
Update No. 6 Prescribe moderate physical activity 6(2)
Update, Diabetes: New diagnostic criteria and NT AusDiab results 8(1)

Nontuberculous Mycobacteria
Non-healing ulcers: Including those caused by non-tuberculous mycobacteria (NTM) 14(1)
Nontuberculous Mycobacteria (guidelines) 10(1)

Norovirus
An outbreak of Norovirus associated with cooked oysters in Darwin 11(1)
Norovirus detected in oyster meal 11(3)
Outbreak of norovirus gastrointestinal illness at Robertson Barracks 13(2)

Notifiable Diseases
Amendments to schedule 11(4)
Announcing 2 new notifiable diseases— invasive Group A streptococcal infection and disseminated strongyloidiasis 18(2)
Changes to the NT Notifiable Diseases Act 1999 6(1)
Changes to the schedules of the Notifiable Diseases Act 13(1)
Changes to the Notifiable Diseases Schedule 17(4)

Comments on Notifications (each issue)
Convening of the Northern Territory Notifiable Diseases Committee 15(3)
Diseases newly added to NT list 6(4)
Eradication Dates, banned dates and statistics! A final word on reporting dates, with apologies to Katherine CDC 9(3)
Establishment of the Notifiable Diseases Committee 17(3)
Guidelines for the management of people with infectious diseases who put others at risk of infection 12(3)
Graphs of selected notifiable diseases (each issue)
IT innovation in CDC—Development and implementation of the NT Notifiable Diseases System 11(4)

Notified cases of vaccine preventable diseases in the NT (each issue)
Notification form 7(1)
NT Malaria notifications (each issue)
NT Notifications of deaths by onset date & districts (each issue)
NT notifiable diseases 2002 – A summary 10(1)
Summary of selected notifiable diseases 2003-04 wet season 11(2)
Strongyloidiasis fact sheet 18(2)

Nutrition and infection in Aboriginal children 4(2)

Otitis media
A single dose treatment for suppurating ear disease in Aboriginal children 9(4)
Chronic supplicative otitis media (CSOM). Ear toilet has not gone far enough 10(4)
Community initiatives to reduce rates of CSOM 9(4)

Outbreak 1(7); 3(4); [brief report] 5(4); 6(2); 8(3)
An investigation into an outbreak of Salmonella Typhimurium phage Type 9 associated with a Darwin restaurant 15(3)
An investigation of a cluster of Salmonella Oslo cases 14(3)
An outbreak of Norovirus associated with cooked oysters in Darwin 11(1)

Burge Belly. A gastrointestinal illness outbreak on a barge at sea 11(3)
Gastroenteritis in Aged Care Facilities 14(3)
Gastroenteritis outbreak due to Staphylococcus aureus 10(3)
Outbreak of gastrointestinal illness at a remote mine site 12(1)
Phone notification 1(7)
Public health management guidelines 5(2)
Salmonella Typhimurium outbreak in the NT, May-June 2002 9(3)
Shigellosis (Outbreak in a tour group in Central Australia) 6(3)
Measles (Outbreak amongst East Timorese evacuees in Darwin, 1999) 7(3)
Mumps 14(3)
Norovirus detected in oyster meal 11(3)
Outbreak of gastroenteritis due to Staphylococcus aureus 10(2)
Outbreak of norovirus gastrointestinal illness at Robertson Barracks 13(2)
Vaccination program 2(1,3,4), 3(2), 6(1)
Vaccination policy 6(4)
Viral meningitis outbreak 14(4)
Reminder 4(1)

Oysters 6(4)

Pap smear test
A review of periodic test in 2009 from the OzFoodNet perspective 17(3)
A review of periodic test in 2010 from the OzFoodNet perspective 18(3)
Northern Territory OzFoodNet Highlights for 2005 13(2)
Northern Territory OzFoodNet Highlights for 2003 11(1)
The Northern Territory OzFoodNet Site – A Summary of 2008 16(1)

Palmerston safe communities program finalist in awards for excellence 15(4)

Pneumococcal Infection
Australian management plan for pneumococcal infection 1(2)
CDNA position statement on the use of antiviral medication for influenza (Pneumonic (H1N1) 2009) 16(2)
Pneumococcal Infection Planning 13(2), 13(3)
Pneumonic (H1N1) 2009 influenza vaccination uptake 16(4)
Survey RHIC WCV attitudes to pandemic (H1N1) 2009 vaccination 16(4)
The early experience of pandemic (H1N1) 2009 influenza in the Northern Territory, Australia 16(2)
The epidemiology of the pandemic (H1N1) 2009 influenza in the Northern Territory, June-September 2009 16(3)
PAP smear Register 3(1), 7(4)

Paracetamol can it decrease the effect of vaccines? 16(4)

Paratyphoid 3(3)

Pediculosis humanus capitus 3(2)

Pelvic inflammatory disease (PID)
Cessation of trial 6(4)
In the Top End 7(3)

Penicillium resistant Nixteria gonorrhoea (see sexually transmitted diseases)

Pericarditis
TB 3(3)

Peritonitis 1(7,8)
Case report 10(9)

Information about peritonitis for GPs 15(2), 16(1), 18(3)
Outbreak 2(4), 8(4)
The Epidemiology of Peritonitis: A study in the Northern Territory in 2006 13(4)
Peritonitis program for new parents 15(4)
Peritonitis (Wheeping cough) - Fact sheet 15(1), 18(3)
Peritonitis – what can CDC offer? 17(2)
Peritonitis outbreak in Central Australia 2010 18(3)

Pneumonia (community-acquired)
Treatment 1(9), 5(4), 7(4), 14(4)

Policies, protocols and guidelines (CDC) 16(2)

Population Health Initiatives
General Practice registrar position CDC 9(2)
The Population Health Education for Clinicians Project 8(2)
Population health education for clinicians - project update 9(2)

Postanesthesia infection. Editorial comment 9(2)

Prisons
Incarceration conference, PHA, April 2003 10(2)
TB Control in the Darwin Correctional Centre and the crew of boats
The Northern Territory Disease Control Bulletin Vol 19, No. 1, March 2012

Carrigaline asylum seekers 10(3)
Protocols (see Guidelines)
Psittacosis 3(3)
Public health
Public Health Response: The Big Wet, Kunbarlanjanja (Oodgerup), Jabiru Outstations (Patonga & Mudgegbarri), Corroboree, Marrakai and Adelaide River Township Floods March 2007. 14(1)
Public health legislation update 12(2)
The Australian Medical Response in Kota Addu, Pakistan following the flood crisis of 2010 17(3)
Q fever – first notified case of Q fever in the NT 9(1)
Rabies
Rabies detected in Bali dogs 15(4)
Rabies, Canine, Human-Indonesia: Bali, Alert 16(1)
Reduction in the number of doses of vaccine for rabies post-exposure prophylaxis 17(4)
Refugees
Guidelines for screening and management of infectious diseases in refugees from Sub-Saharan Africa—based on a single initial blood sample after arrival in the NT 11(4)
Refugee health in Australia – responding to the emerging needs 13(1)
Respiratory illness in 2 Darwin schools 4(3)
Reopening a hospital in Bandar Acheh 12(3)
Rheumatic Fever/Rheumatic Heart Disease
Evaluation of a rheumatic heart disease video as an educational tool in Aboriginal communities of Northern and Central Australia 12(3)
Evidence-based Review for ARP and RHD, an Australian first 13(3)
Healthy school aged kids: Rheumatic heart disease (RHD) screening 17(4)
Letter to the Editor 15(1)
Menzies School of Health Research - projects 3(2)
New directions for the Rheumatic Heart Disease Program 12(3)
Program 4(4), 8(2), 10(1), 10(2)
Red flag tool for recognition of acute rheumatic fever 18(2)
Rheumatic fever and streptococcal pyaemia 10(2)
Rheumatic Fever: Links the joints, bites the heart (and nibbles the brain...) 14(4)
Rheumatic Fever Video (DVD) launch at Gennellip 12(4)
Rheumatic heart disease 2(5)
Should Acute Rheumatic Fever and Rheumatic Heart Disease be nationally notified? 11(3)
Standards for care in Aboriginal communities 2(5)
The Acute Rheumatic Fever/Rheumatic Heart Disease Program - an update 14(2)
The Top End rheumatic heart disease control program I. Report on program objectives 8(2)
The Top End rheumatic heart disease control program II. Rates of rheumatic heart disease and acute rheumatic fever 8(2)
The NT Rheumatic Heart Disease Control Program: an update 18 (1)
Road safety
The time for Safer Roads in the NT has come: summary and outcomes of the NT Road Safety Task Force process 13(4)
Ross River Virus 3(1), 4(7), 8(8), 2(1), 4(1) 14(2)
Case reports 2(6)
Rotavirus 2(2), 8(3), 13(3), 15(1), 17(2)
Rubella 16(6)
Encephalitis 2(1)
Safety
An analysis of injury patterns following road traffic collisions in the Northern Territory 17(1)
Editorial 17(1)
Palmerston Safety Survey 2006: home safety, perceptions of community safety and experiences of injury 14(4)
Palmerston safe communities program final report for excellence 15(4)
Salmonella
An investigation of a cluster of Salmonella Osdo cases 14(3)
An investigation into an outbreak of Salmonella Typhimurium phage Type 9 associated with a Darwin restaurant 15(2)
Considerations around the increase of Salmonella Mooloolah notifications in the Top End 9(2)
Gastroenteritis outbreak due to Salmonella 10 (4)
Outbreak linked to a marine turtle 5(4)
Outbreak of gastroenteritis due to S Typhimurium 10(2)
Salmonella Ball outbreak in the NT, May-June 2002 9(3)
Salmonella kohnsoni [brief report] 5(4)
Salmonella Paratyphi B var Java in a child and their pet turtle 14(3)
Salmonella species in fresh produce – an emerging food safety issue for the NT 14(3)
The 1996 national outbreak of Salmonella minnesota 4(2)
What is environmental Salmonella? 12(4)
Severe Acute Respiratory Syndrome SARS 10(1); 10(2); 10(3); 11(2)
Scabies 10(9)
Community control of scabies and skin sores 4(3)
Endemic scabies in dogs and people are different 5(3)
Healthy Skin Program. Guidelines for the community control of scabies, skin sores and crusty scabies in the Northern Territory 17(2)
Management of patients in hospital with crusty scabies 4(2)
Treatment 2(3)
Screw worm fly [ED letter] 3(4).
Ready for the ‘killer maggot’ 8(1)
Scrub typhus 13(3)
Sentinel Chicken Program results in the Top End of the NT 14(2)
Sexually transmitted disease 16(6); 5(4)
A background report about the cessation for the 2010 Central Australian annual sexual health screen 17(2)
Azithromycin trial 2(2)
Bacterial vaginosis in women having a suction termination of pregnancy in Darwin 9(3)
Central Australian STI risk factor study 15(2)
Chlamydia
Chlamydia Rates Are Rising Sharply in the NT 13(2)
An investigation into the amount of Chlamydia testing performed by various health care providers in the NT 18 (1)
Congenital syphilis: Revised guidelines for the investigation and treatment in the Top End of the NT 5(4)
Congenital syphilis: revised protocol for management and re-establishment of follow-up register in the Darwin region 12(3)
Contact tracing 20(3)
Donovoniasis eradication (National Elimination Project) 2001-2004 11(4)
Donovoniasis (Fact sheet) 11(4)
Editorial 11(1)
Federal Budget initiatives 1998/99 5(2)
Gonorrhoea 19(9), 10(1)
Gonococcal conjunctivitis 15(2); 4(3)
Gonorrhoea testing and antimicrobial resistance in the NT 7(1)
Guidelines for the control of gonococcal conjunctivitis 4(3)
Highlights of the 1995 NT AIDS/STD Program Report 3(1)
Human papilloma virus (HPV)
Using Human Papillomavirus testing to monitor effectiveness of treatment of high grade intra-epithelial abnormalities of the cervix 12(3)
Update on the HPV program and National HPV register 15(3)
Interim NT Guidelines for the Management of Sexually Transmitted Infections in the Primary Health Care setting 13(1)
Knowledge and practices by GPs in the Top End 8(3)
Management of male urethral discharge (pus from the penis) or dysuria (pain when passing urine) in the primary health care setting 12(2)
NT antibiotic resistance N gonorrhoeae sentinel surveillance sites 8(4)
N. gonorrhoeae Sentinel Site Surveillance – data analysis July 2001 to June 2002 11(1)
Needs Analysis - Youth Access to Sexual and Reproductive health services. A Snapshot 14(4)
Northern Territory report on HIV/AIDS, Hepatitis C and Selected Sexually Transmitted Infections 12(3)
Pee education 2(3)
Pelvic inflammatory disease (PID): Cessation of trial 6(4)
Pelvic inflammatory disease in the Top End 7(3)
Penicillin resistant gonorrhoea in the Darwin region 2001-2004 12(4)
Penicillin resistant N. gonorrhoea in the Darwin region 11(2)
Penicillin resistant N. gonorrhoea. Alert from far north Queensland 7(1)
Protocol for STD testing 4(1)
Protocol for treatment of uncomplicated genital chlamydia infection 2(2)
Put it on or we can get it on. A sexual health campaign targeting young people aged 15-19 in Darwin 11(2)
Report on STIs in the NT: A refresher course 9(1)
Screening 1(10); 8(1)
Sex in the city. Young Women’s HIV Awareness Campaign 9(4)
Sexually Transmitted Infections in Those Under 16 Years of Age in the Northern Territory 12(3)
Standard treatment protocol for STIs 4(1)
STIs in the NT: A refresher course 8(4)
STI screening conducted in the NT DHCS and community controlled health services in Central Australia 2004 11(4)
Syphilis
Increasing notifications of infectious syphilis among men who have sex with men in Darwin urban area - An alarming recent trend and alert to GPs 14(4)
Syphilis re-treatment - are we overdoing it? 9(1)
Elimination of infectious syphilis in the NT: are we ready yet? 18(3)
Tampon study 2(8), 3(3)
Treatment 2(2)
Treating genitourinary in the Darwin region: safe to use amoxicilllin and probenecid again for locally acquired infections 12(1)
The meaning of STUBBV prevention through Web 2.0 applications 17(1)
The NT Sexual Health Advisory Group 14(2)
The NT Sexual Health Advisory Group - Two years on 16(1)
The review of Sexually Transmitted Infections (STI) and Blood borne virus (BBV) prevention and management in the NT 12(1)
Trend towards a sexual health strategy for remote communities in the NT 7(5)
Trends in notification of sexually transmitted infections from Alice Springs Hospital laboratory 13(1)
Trichomoniasis 2(6); 9(1)
Update on recommendations for treatment of Neisseria gonorrhoeae infection in the Darwin region 11(3)
Understanding antimicrobial susceptibility 8(4)
Urine screening 3(3)
Ven Treppo – The inaugural sexual health college conference – June 2000 7(4)

Stigmatisation
Outbreak in a tour group in Central Australia 6(3)
Smoking
Community education 3(4)
Splenectomy
Compliance with post-splenectomy guidelines - An audit 12(4)
Staphylococcal disease
A cluster of invasive S. aureus disease in the Top End 4(2)
Gastroenteritis outbreak due to Staphylococcus aureus 10(3)
Streptococcal disease
Acute post-streptococcal glomerulonephritis 2(3); 8(2); 11(3) 15(3)
Control of acute post-streptococcal glomerulonephritis 4(2)
Outbreaks 2(6); 8(2)
Neonatal group B protocol 2(4)
Surveillance
Changes to NT Communicable Disease Surveillance System 2(1,4)
NT Hepatitis C enhanced surveillance 7(2)
Summary of selected notifiable diseases 2003-2004 wet season 11(4)
Surveillance of meningococcal disease in the NT 5(1)
Syndromic surveillance of Emergency Department attendances in the Northern Territory 13(3)
Tampon Study 2(9); 3(3); 5(2)
Territory Day (see firework-related injuries) 6(3)
Tetanus Vaccination 6(3)
Tobacco Control 10(2)
The Achec response - a personal account 12(2)
Too many road crashes involving young drivers. Time for changes to our licencing systems and driver education strategies. 12(2) 'Total Recall' implementing at Jabiru Health Centre 7(1)
Trachoma
Acute post-streptococcal glomerulonephritis and opportunistic trachoma screening in an Indigenous community in the Northern Territory, 2001 18(4)
Azithromycin therapy 2(7), 14(4)
Busting the myths about trachoma 18(2)
Control and treatment of active trachoma in the NT 4(1)
Editorial: NT Trachoma project update 18(3)
Guidelines for management of trachoma in the Northern Territory 15(2)
Towards GET 2020: Trachoma in the NT 2010 18(3)
Trachoma: New problem or old dilemma? 9(2)
Treatment of trachoma in small babies 14(4)
Treatment program in the Katherine region 3(4)
Trachoma: new advances in treatment 14(4)
Trachoma: Report from the Working Group 9(3)
Trachoma update and an invitation to become a Trachoma Volunteer 14(2)
Training
General Practice registrars in CDC, Darwin 8(1)
Tuberculosis
Addendum to article on HTLV-I and Tuberculosis in Central Australian Aboriginal people (Bulletin 14 no 3, Sept 2007 pp 5-8) 15(1)
BCG complications - Alice Springs 2(5)
BCG complications - a review 5(3)
Community screening - a new threat promotes community action 9(1)
Guidelines for the Control of Tuberculosis in the Northern Territory 4th Edition, April 2008 15(1)
HTLV-I infection and tuberculosis (TB) in Central Australian Aboriginal people 14(3)
Managing tuberculosis in Kirikiri, Solomon Islands 11(2)
Mantoux school screening 1991-2000 9(1)
Mantoux - Two-step testing 10(2)
Migrant cases 1990-1993 2(9)
Mini outbreak in Central Australia 3(3)
Mycoplasma bovis 10(2)
Multi-drug Resistant Tuberculosis in an Indonesian Fisherman 13(4)
Northern Territory school screening 2003-2005 13(4)
NT supports world push to stop TB 19(1)
Preventive treatment and follow-up of contacts 2(5)
Pneumococcal 3(3)
Results of contact tracing following transmission of Mycobacterium tuberculosis in an urban itinerant Aboriginal population in Australia 12(1)
TB Control in the Darwin Correctional Centre and the crew of boats carrying asylum seekers 10(3)
TB in Two Katherine Region Communities 10(3)
TB Day media release 18(1)/Mosquito 7(4)

The Territory two steps - enhancing detection of latent Mycobacterium Tuberculosis in HIV clients 11(3)
The utility of screening Royal Darwin Hospital health care workers for tuberculosis infection with a two-step Mantoux test 11(3)
Top End TB Outbreak 15(4)
Top End TB Outbreak Update - A Househol Connection 16(1)
Top End TB Outbreak Update - A Househol Connection. What's been happening? 17(1)
Treatment completion for latent TB in Darwin 2005-2007 14(4)
Tuberculosis Guidelines 10(2)
Tuberculosis in the NT: Highlights from 2000 9(3)
Tuberculosis transmission within a single household - a report of a cluster of 11 cases 16(1)
Update on Top End community fighting TB 9(2)

Tsunami
The Ache response - a personal account 12(2)
Infection control and waste management at the Zainoel Abidin Hospital, Bandar Acheh, April 2005 12(2)

Typhoid
Typhoid 3(3)

Unauthorised Fishermen
Assessing the Health of Unauthorised Fisherspersons - Perceived Health of Off the Northern Territory Coast - Developing Procedures and Protocols 13(1)
Imported malaria cases at the Northern Immigration Detention Facility. Barrier, Northern Territory - Risk assessment and recommendations 13(6)

Vibrio bacterial disease fact sheet 13(3)

Video - Keeping Track of Good Health 6(2)
VRE or not VRE - "always ask twice... or three..." 9(2)

Varicella
Chickpea and gongoes (varicella zoster) - Fact sheet 15(3)
Hospital separations in the NT for varicella-zoster virus related illnesses, 1993-1997 6(4)
Usefulness of self-reported history in adult women in the Top End 6(4)
Varicella-zoster virus in pregnant women and babies 6(4)
Varicella vaccine workshop, Melbourne. Dec 1999 6(4)

Viral meningitis 16(6)
Water Quality (see Environmental Health)
Water related injuries - see Injury prevention

Website - The what and how of the AIDS/STD website 9(3)
WHO Reports 3(2,4) 5(2)
Wicked problems: climate change and indigenous health 15(4)
Women's Cancer Prevention Program
Culturally and linguistically diverse women's project 6(4)
World Youth Day 15(2)
Yellow fever [WHO update] 5(2)
Zidovudine (AZT)
Implications for antenatal HIV testing 26(6)

Zoonoses
Dogs 2(3)
see Leishmaniasis 10(4)