Rabies exposure encounters and prophylaxis in those using health services in the Northern Territory 2007-2011

Seb Haiart¹, Chris Nagy² and Vicki Krause³
¹Medical Student, Flinders University, ²CDC Darwin

Abstract

Since the first reports of rabies in dogs in Bali in 2008, the Northern Territory (NT) has seen a significant increase in the number of people seeking post-exposure prophylaxis (PEP) for rabies. Between 2007 and 2011, 92 people presented to a NT health facility for PEP for animal bites acquired overseas and 58 doses of rabies immunoglobulin (RIG) were administered. Of the 92 possible exposures, 66 were caused by interactions with animals in Bali, which included monkeys (53), dogs (7), cats (2), squirrels (3) and a bat(1). Current guidelines do not recommend pre-trip vaccination for tourists taking short trips to endemic areas. It is our suggestion that given the close contact a large number of tourists in Bali come into with monkeys and dogs, perhaps the guidelines should be revised to include these travellers for pre-trip vaccination for rabies.

Key words: rabies; prophylaxis

Background

It was with interest that we read Mills¹ article on rabies exposure in Australian travellers where the most at-risk age-group, the most common overseas destinations and animals were highlighted. The article importantly noted the difficulties most travellers experienced in obtaining rabies post-exposure prophylaxis overseas. We have encountered similar experiences in the Northern Territory (NT), especially since the introduction of rabies into Bali in 2008. We decided to critically interrogate our data to further inform the discussion around the best approach to protecting and educating those at risk of rabies.
Methods

We looked at our prospectively collected data on people receiving rabies prophylaxis from the Centre for Disease Control (CDC) in the NT from 2007 to 2011 inclusive, specifically looking at the number of people seeking post-exposure prophylaxis (PEP) vaccination and rabies immunoglobulin (RIG) and the nature of the animal exposure. This information is kept on an Excel database by the Immunisation Unit at the CDC in Darwin. All doses of RIG administered are reported to the national database maintained by the Commonwealth for people potentially exposed to rabies and Australian Bat Lyssavirus. We did not include any data for people who had contact with Australian bats and potential exposure to Australian Bat Lyssavirus for this review.

Results

In total, there were 92 people with animal exposure encounters (possible rabies exposure cases), with 87 people given PEP in the NT (Table 1) with 58 of whom were given RIG (Table 2). The 6 encounters in 2007 were people exposed to animals in Thailand (3), the Philippines (1), Vietnam (1), and Timor (1). By 2011 there were 40 exposures, with 31 from Bali.

Table 3 shows the implicated animals. Overall from 2007-2011 there were 59 exposures to monkeys, 53 of which were in Bali. The vast majority were monkey bites, although there were 5 cases of monkey scratches and 4 cases of people being both bitten and scratched. There were 23 exposures to dog bites in Bali (7), Thailand (5), Timor (4), Vietnam (2), Cambodia (2), China (1), Mongolia (1) and Ethiopia (1). Other animals included 3 squirrels (all in Bali), 5 cats, a civet cat (in Bali), and 1 bat (in Bali).

Only 1 person received RIG overseas. Post-exposure vaccination was instigated overseas in 43 cases (some people received more than 1 dose of the 4 dose vaccination schedule), 18 people received their first dose of vaccine overseas and returned to Australia for RIG and follow-up vaccine. Of note, RIG was sent from Darwin to Timor for 3 Defence Force personnel, as well as 1 course of PEP vaccine and RIG sent to Timor for a Timorese resident.

Table 2 indicates why RIG was not administered to some returning travellers.

No cases of human rabies were reported in our study population. There was 1 case of confirmed rabies in a dog that had bitten a person in Bali. The person had pre-departure vaccination in the year prior to the bite and was given 2 doses of rabies vaccine post-exposure in Darwin in accordance with National Health and Medical Research Council recommendations. Due to pre-exposure vaccination, RIG was not indicated.

Discussion

The first year of this study, 2007, rabies had not been documented yet in Bali and only 6 potential animal exposures were reported to the CDC in the NT. In 2008 rabies was first documented in Bali and by 2011 there were 40 potential rabies animal encounters reported to the CDC in the NT, 31 from Bali.

Our study population had a pre-trip vaccination rate of 6.5% compared to 1.5% in the Mills study. Given the number of possible exposures it is clear that many could have been avoided if the uptake of pre-exposure vaccination could be increased.

Table 1. Rabies exposure encounters and PEP given

<table>
<thead>
<tr>
<th></th>
<th>Encounters</th>
<th>Encounters in Bali</th>
<th>Number given PEP in the NT</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>6</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>2008</td>
<td>8</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>2009</td>
<td>17</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>2010</td>
<td>21</td>
<td>15</td>
<td>18</td>
</tr>
<tr>
<td>2011</td>
<td>40</td>
<td>31</td>
<td>39</td>
</tr>
<tr>
<td>Total</td>
<td>92</td>
<td>66</td>
<td>87</td>
</tr>
</tbody>
</table>
The costs associated with PEP including RIG are enormous compared to pre-exposure vaccination. Without pre-exposure vaccination, RIG is required in addition to a PEP vaccine course. Before June 2010 this consisted of 5 doses of vaccine on days 0, 3, 7, 14, 28 for all exposures. Since June 2010, the schedule reduced to 4 doses on days 0, 3, 7, 14 in immune-competent persons, with an additional dose on day 28 only for immune-compromised persons.

RIG is the expensive item – but the vaccines are time and resource-intensive. The average cost of PEP vaccine with RIG for a 70kg person is $2170, whereas pre-exposure prophylaxis of 3 doses of vaccine costs $270 and the 2 dose course of vaccine required after a potential rabies encounter for people previously vaccinated is only $180. We have only recovered the costs of 1 course of PEP and RIG from a travel insurance company during the last 5 years. An attempt is made in overseas travellers and people bitten as a result of a work injury.

<table>
<thead>
<tr>
<th>Year</th>
<th>Number pre-vaccinated (did not require RIG)</th>
<th>Number given RIG</th>
<th>Number not given RIG (excludes those pre-vaccinated)</th>
<th>Reason for not giving RIG</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>Presented >7 days after first vaccine given overseas</td>
</tr>
<tr>
<td>2008</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>Presented >7 days after first vaccine given overseas</td>
</tr>
<tr>
<td>2009</td>
<td>0</td>
<td>12</td>
<td>4</td>
<td>Presented >7 days after first vaccine given overseas</td>
</tr>
<tr>
<td>2010</td>
<td>3</td>
<td>15</td>
<td>2</td>
<td>Presented >7 days after first vaccine given overseas</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>Pet dog reported well 10 days post bite</td>
</tr>
<tr>
<td>2011</td>
<td>1</td>
<td>23</td>
<td>10</td>
<td>Presented >7 days after first vaccine given overseas</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>Licks to skin – no PEP required</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>Minor skin breaks with no bleeding (vaccine only)</td>
</tr>
<tr>
<td>Total</td>
<td>6</td>
<td>58</td>
<td>27</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>Monkey scratch/bite</th>
<th>Dog scratch/bite</th>
<th>Cat scratch/bite</th>
<th>Squirrel scratch/bite</th>
<th>Bat scratch/bite</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2008</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2009</td>
<td>10</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2010</td>
<td>14</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2011</td>
<td>25</td>
<td>7</td>
<td>5</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>59</td>
<td>23</td>
<td>6</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>
related injury (e.g. wild-care workers, veterinarians), to gain payment for PEP vaccines, however, this occurs infrequently. The Northern Territory and Australian Government public health budgets jointly currently cover the cost of all doses of RIG that are administered.

The NT Government Department of Health website provides information under the heading, ‘Travelling to South East Asia’ where it “strongly advised travellers to take out overseas travel insurance from a reputable company before departing”2. It also informs travellers that rabies is a deadly viral infection that can be transmitted by infected animals across South East Asia and can be transmitted to humans from bites, scratches or licks to broken skin or the mouth or eyes. It warns travellers not to approach, stroke or pat dogs, cats, monkeys or other animals. It directs that any scratches or bites should be washed thoroughly and medical attention must be sought so that treatment can be given, emphasising that rabies is a fatal disease. It raises the point that some people may have rabies vaccinations before they travel and this possibility should be discussed with their doctor. It cautions that people vaccinated against rabies before travel must still seek medical attention post exposure as further (although less extensive and less expensive) treatment is still required.

The current Australian Immunisation Handbook3 only recommends pre-exposure vaccination for those travelling to an endemic area for over 1 month or for those intending to handle animals in endemic areas. Data does not get collected on how long people had been travelling overseas when having their rabies exposure encounters. We do have data on occupation though and have identified 2 people who should have been vaccinated according to current recommendations. One person was a dog catcher working in Thailand and the other was a Defence Force worker in Timor. One dog catcher in Bali and 3 Defence Force workers in Timor were appropriately vaccinated prior to exposure.

A recent study from GeoSentinel4, a global surveillance network that runs a database collecting data of diseases reported in international travellers and immigrants from 53 clinical sites in 24 countries, reported rabies PEP as the third most common notable specific diagnosis among returned travellers. This was behind malaria and giardia. The top countries for rabies-potential bites and scratches were reported to be Thailand, Indonesia, China and India.4

We think the Guidelines3 should reflect the high-risk nature of being around uncaged and unpredictable animals, such as the monkeys in areas of Bali and expand the target ‘at-risk’ group. It is perhaps reasonable to advise vaccination for tourists going to Bali who plan to be outside the immediate Denpasar area no matter the length of their stay. Further information is required to determine whether the 1 month recommendation is too prescriptive. Regardless, public education should be increased and targeted at overseas travellers to raise awareness of the disease, its prevalence in tourist areas and the role of both pre and post-vaccination.

References

Influenza (flu) season is again upon us, and the Northern Territory (NT) Centre for Disease Control (CDC), together with colleagues in Infection Control, are once again planning the campaign to encourage as many people as possible to be vaccinated. There has been much media attention recently about the high incidence of influenza in North America that unfortunately led to the deaths of a number of people, many of whom were vulnerable due to extremes of age, or as a result of underlying medical conditions. In the NT cases of H3N2 and H1N1 have already been reported, both of which are strains covered in this year’s vaccine.

The composition of the vaccine has changed from last year and contains the following components:
- A/California/7/2009 (H1N1)-like virus
- A/Victoria/361/2011 (H3N2)-like virus
- B/Wisconsin/1/2010-like virus

It is well accepted that the influenza vaccine does not offer perfect individual protection, with efficacy reported at around 60% and possibly lower in older adults. However, public health departments worldwide continue to recommend the vaccine as the main tool we currently have to reduce the burden of disease. Individuals particularly at risk from complications, and over-represented among those who die from influenza, include those with chronic heart, lung, renal and neurological disorders, pregnant women, elderly patients and those of Indigenous origin. Healthcare staff should actively promote the vaccine to everyone but especially to those who may be at risk from complications and to those living in areas burdened by poor health literacy or geographical isolation. People over the age of 6 months with specific chronic health conditions will be eligible for free vaccination under the National Immunisation Program and further information about these groups can be found at the following CDC internet link: http://health.nt.gov.au/Flu/index.aspx

Children

Following reports of severe adverse reactions among young children who had received Fluvax® brand of influenza vaccine in 2010, this specific brand of vaccine (Fluvax® produced by bio CSL) is not to be used in children under the age of 10 years. Options for children under the age of 10 years who are eligible for free influenza vaccination with other brands of influenza vaccine under the National Immunisation Program are as follows:

Table. National Immunisation Guidelines

<table>
<thead>
<tr>
<th>Category</th>
<th>Vaccine Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>All children 3 years < 10 years with medical conditions that predispose them to severe influenza (per categories listed above)</td>
<td>VAXIGRP® 0.5 ml IMI * (1 or 2 doses may be required)</td>
</tr>
<tr>
<td>All children 6 months – 35 months with medical conditions that predispose them to severe influenza (per categories listed above)</td>
<td>VAXIGRIP JUNIOR® 0.25 ml IMI * (1 or 2 doses may be required)</td>
</tr>
</tbody>
</table>

*Note:
- 2 doses of vaccine given at least 1 month apart are recommended for children ≤ 9 years of age who are receiving influenza vaccine for the first time.
- If a child 6 months ≤ 9 years of age receiving influenza vaccine for the first time inadvertently does not receive the second dose in the same year, he/she should have 2 doses given in the following year.
- Children requiring 2 doses of influenza vaccine should have them administered no closer than 28 days apart.
- Where 2 doses of 2013 seasonal influenza vaccine are required the same brand of vaccine should be administered where possible.
Healthcare staff

Encouraging healthcare staff to take up the offer of vaccination against influenza is always challenging; in part, because many young healthcare workers perceive themselves to be fit and healthy, “not at risk”, and associate the need for vaccination with older individuals. A meta-analysis of studies investigating attitudes to influenza vaccination among healthcare workers found that predictors of vaccination included an individual’s knowledge about the infectiousness of influenza, belief in the ability of the vaccine to protect, and a desire to protect themselves and their families. Interestingly, healthcare workers in these studies were less influenced by the desire to protect vulnerable patients. A local study in 2007 found the most common reasons cited for not being immunised were being too busy; immunisation not being offered conveniently and being unaware of how to access the vaccine. A higher level of knowledge about influenza vaccination was strongly associated with ever having received immunisation. Whatever their motivation for doing so, we would encourage as many staff as possible to consider being vaccinated this year and have been actively promoting the vaccine in a number of departmental sessions throughout the hospitals.

Getting the influenza vaccine

For many years, the NT Department of Health (DoH) has committed to funding the vaccine for its staff. It will be offered to all DoH staff in all regions of the NT. Details of the locations of staff vaccination clinics can be found at the following CDC intranet link:

In the hospitals, the Infection Control teams will be organising mobile clinics to visit clinical areas.

Other healthcare agencies outside of the DoH often fund the influenza vaccine for their staff and readers are advised to contact their managers to discuss this further.

Key messages

- The influenza vaccine has to be given every year as protection only lasts for around 12 months.
- You cannot catch the flu from having the vaccine, as it does not contain any live virus.
- This year’s influenza vaccine covers the most prevalent strains of influenza causing disease this year and is different from last year’s vaccine.
- Individuals with chronic diseases such as diabetes, heart, lung or kidney disease are more at risk of developing severe complications from influenza, as are women who are pregnant.
- Having the influenza vaccine means you are less likely to transmit the flu to your families. Remember young babies and elderly people can be severely affected by influenza.
- Having the influenza vaccine reduces the risk of transmitting the flu to your patients, many of whom will have chronic diseases which render them more likely to have severe complications.

Further information

For further information about the influenza vaccine, or about any vaccines, please contact CDC in your local area, visit the CDC intranet or internet pages, or visit the national Immunise Australia website on: http://www.immunise.health.gov.au/

References

Important notice:
Influenza vaccine for children

- Bio CSL’s seasonal influenza vaccine Fluvax® is NOT registered for use in children under 5 years.
- There is also a ‘precaution’ for the use of Fluvax® in children aged 5 years to < 10 years.
- The recommendation in the NT is to use alternative influenza vaccines for children between 6 months and < 10 years of age.

National Immunisation Program – funded vaccine for children with medical conditions predisposing them to severe influenza

<table>
<thead>
<tr>
<th>All children 6 months – 35 months</th>
<th>VAXIGRIP JUNIOR® 0.25ml IMI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>* (1 or 2 doses may be required)</td>
</tr>
<tr>
<td>All children 3 years - <10 years</td>
<td>VAXIGRIP ® 0.5ml IMI</td>
</tr>
<tr>
<td></td>
<td>* (1 or 2 doses may be required)</td>
</tr>
</tbody>
</table>

* 2 doses of vaccine given at least 1 month apart are recommended for children ≤ 9 years of age who are receiving influenza vaccine for the first time

* If a child 6 months - ≤ 9 years of age receiving influenza vaccine for the first time inadvertently does not receive the second dose in the same year, he/she should have 2 doses given in the following year

Children not eligible for the funded influenza vaccine under the National Immunisation Program can purchase the vaccine if their parents wish them to be vaccinated. Vaxigrip®, Aggripal®, Fluarix® and Influvac® can be used in any children 6 months of age or older.

All healthcare workers are encouraged to be vaccinated against influenza. Personal protective measures such as handwashing and covering the mouth and nose when sneezing and coughing are important but vaccination against influenza is the best way to protect staff and patients.

It is here—the newest edition of *The Australian Immunisation Handbook* 10th edition Check it out

NCIRS has developed a slide set for immunisation service providers, summarising what’s new in the latest edition of *The Australian Immunisation Handbook*. It is intended as an educational teaching tool to accompany the 10th edition of the Handbook which was released by the Australian Government Department of Health and Ageing in March 2013.

Abstract

There were 475 cases of laboratory confirmed influenza notified in the NT in 2012. There was a pre-seasonal increase in the Top End in March and April and the season commenced in early May, starting in Central Australia. Significant numbers of cases were notified until mid-December. Even though the annual total was the lowest since the pandemic year (2009), rates in the non-Indigenous population were the highest since 2009 and the number of non-Indigenous people hospitalised was the highest since recording began in 2007. Alice Springs town and the Katherine region had the highest rates. Data from other influenza surveillance systems are summarised.

Introduction

Until 2006, influenza surveillance in the Northern Territory (NT) consisted of just 2 arms; the notification of laboratory-confirmed cases through the Notifiable Diseases System notifications (NTNDS) and GP sentinel surveillance of influenza-like illness through the Territory Influenza Sentinel Surveillance System (TISS). By 2012, it had increased to involve daily syndromic surveillance from all NT Emergency Departments, volunteer reporting of cough and fever through an internet-based reporting system (FluTracking) and the involvement of Alice Springs Hospital in the national sentinel hospital surveillance (FluCan). This report summarises these surveillance systems and describes the epidemiology of influenza in the NT in 2012.

Methods

Laboratory-confirmed influenza cases are notified by NT laboratories to the Centre for Disease Control (CDC) and entered into the NTNDS which gets migrated nightly to the Department of Health’s data warehouse. The data are interrogated using either STATA or Business Objects, the Department’s business intelligence software. Population data were derived from the population data file from Health Gains Planning Branch; the 2009 and 2010 population extrapolated in a linear fashion to derive the 2012 data. Cases which tested positive to influenza A but negative to the specific subtype A/H1N1 were assumed to be A/H3N2 for the purposes of this analysis.

GP sentinel surveillance in the NT used to be run from CDC via TISS but now comes under the Australian Sentinel Practice Research Network (ASPREN). GP services report to the ASPREN website the details of cases of influenza-like illness (ILI) they have seen together with the total number of consultations per week. The statistic derived is the rate of ILI cases per 1,000 consultations. Data from this system are derived from the ASPREN website.

Data for the Emergency Department Influenza-like Illness Surveillance System (EDILIS) are derived from the presenting complaint field in the Caresys ED module on all cases presenting to all NT emergency departments. Here ILI is defined as any presentation with the following 4 classifications; febrile illness, viral illness, respiratory infection or cough. These are also migrated into the data warehouse and interrogated using Business Objects and Excel. EDILIS is a syndromic surveillance system designed to detect the first increase in symptoms in the community; hence the usual statistic used is the “CuSum” which is the cumulative sum of the difference between the daily count and the number of cases expected (based on a running mean). However, for the seasonal analysis, just the weekly counts of ILI were analysed.

FluTracking works by sending weekly emails to several hundred NT volunteers asking questions about recent flu-like symptoms and vaccination status through a website. The data for the NT are collated by the FluTracking office in Newcastle, sent to CDC weekly and analysed using STATA.

This year CDC also received data from FluCan which is a national surveillance system monitoring admissions for ILI in sentinel hospitals. In 2012, Alice Springs Hospital joined the other 12 hospitals to report on ILI hospitalisations and outcomes. The results from this system will not be included in this report.
The Royal Darwin Hospital laboratory actively contributes to global virological surveillance by referring specimens to the World Health Organisation Collaborating Centre for influenza in Melbourne for strain analysis. This is done either directly or through the Western Australian reference laboratory (PathWest).

Results

Laboratory confirmed cases

There were 475 cases of laboratory-confirmed influenza notified to CDC in 2012. This compares with 638 in 2011 and 503 in 2010 and was the lowest annual total since testing increased during the 2009 pandemic. The “flu season” commenced in Central Australia (mostly type B) in early May and in the Top End in June (mostly A/H3N2). In the Top End there was an increase in both A and B types in March and April 2012 prior to the “flu season” commencing. This is consistent with the small rise which happens at that time in most years and low levels of notifications continued through April and May. The season peaked in early July in both the Centre and Top End then persisted until the middle of December, lasting for over 7 months (Figure 1).

There were 219 cases (46%) of subtype A/H3N2 while another 59 (12%) were type A with no further typing. There were 184 (39%) type B cases and just 13 (3%) subtype A/H1N1, the 2009 pandemic strain.

The age-specific rates in the Indigenous and non-Indigenous populations are illustrated in Figure 2. Interestingly, rates in the age-groups between 5 and 44 years were similar in both groups while the Indigenous population had much higher rates in the under 5 year age-group and in those 45 years and over. In the non-Indigenous population rates were higher in the 65 year and over age group compared with younger age-groups. The rate of laboratory-confirmed influenza was 299 per 100,000 in the Indigenous population compared to 159 per 100,000 in the non-Indigenous population, a rate ratio of 1.88 (not shown). The indirect age-standardised incidence ratio was 1.84. This compared with a crude rate ratio in 2011 of 6.46, when the rates in the Indigenous and non-Indigenous populations were 670 and 104 per 100,000 respectively.

In 2012, 251 cases or 53% of notifications were in hospitalised cases. This compares with 50% in 2010 and 32% in 2010. There were 154 Indigenous people (75% of cases) admitted with influenza and 97 (38% of cases) non-Indigenous. Hospitalisation rates were 216 per 100,000 in the Indigenous population and 59 per 100,000 in the non-Indigenous population given a rate ratio of 3.7 (95%CI: 2.82-4.77; p<10^-5). This compared with a rate ratio of 12.4 during the 2009 pandemic. There were more non-Indigenous cases of influenza admitted to hospital in 2012 than in 2009 (79) or in any of the years since. The median length of hospital stay was greater in the Indigenous population than the non-Indigenous (4 days v 3 days; Wilcoxin rank-sum test, p=0.025).

Figure 1. Count of laboratory-confirmed influenza by week and region; 2012.

Figure 2. Age-specific rates of laboratory-confirmed influenza by Indigenous status; 2012
Rates were higher in the Alice Springs town and Katherine region and lowest in urban Darwin (Table).

Overall, 24% of laboratory-confirmed cases were vaccinated against influenza for the season, 30% of Indigenous cases and 18% of non-Indigenous. Of interest was that 30.4% of cases of subtype A/H3N2 were vaccinated compared with 17.6% of cases of influenza B (p=0.005). This compares with the figures of 23.2% and 21.4% respectively in 2011 (p=0.724).

Among the non-Indigenous population cases were distributed evenly between males and females, however in the Indigenous population then was a greater number of female cases (122 v 81; binomial probability, p=0.005).

Pregnancy status was recorded on 98 of the 128 female cases of childbearing age, of these 16 (16%) were pregnant which is about 3 times what might be expected*. Interestingly 7 of these had influenza B and the proportion of cases who were pregnant was not influenced by the type of influenza. There were no deaths attributable to influenza notified in 2012.

Sentinel GP surveillance from ASPREN

The sentinel GP surveillance pattern was consistent with the other systems apart from a spurious rise in January and February which was not confirmed elsewhere (Figure 3). The ILI rate peaked at 28 per 1,000 consultations in the first week of July, almost coinciding with the peak week in the laboratory-confirmed case numbers, however it did not indicate the persistence of the season until December.

*It is estimated that 5% of women of child bearing age will be pregnant.

Emergency Department ILI Surveillance

The EDILIS system was useful as a monitoring tool during 2012 and the pattern of weekly counts mirrored that of the laboratory-confirmed notifications (Figure 4, p.12).

FluTracking

The FluTracking system attracted about 700 volunteers from the NT in 2012 with about 53% reporting having had the seasonal influenza vaccine. An average of 530 volunteers reported each week but with the mean weekly count of cough and fever being only 16 (2.9%), this was probably not enough to get meaningful patterns from the data. Overall the pattern of illness did not correlate well with the other surveillance systems.

Discussion

The 2012 influenza season was an average flu season with fewer cases of laboratory-confirmed disease than the previous 2 years but more hospitalisations than 2010 and a similar number to 2011. Surveillance based on laboratory notifications is always subject to the variations in testing behaviour and it is likely that the

Table. Laboratory-confirmed case numbers and rates per 100,000 by region.

<table>
<thead>
<tr>
<th>Region of residence</th>
<th>Cases</th>
<th>Rate /100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice Springs Rural</td>
<td>36</td>
<td>248</td>
</tr>
<tr>
<td>Alice Springs Urban</td>
<td>100</td>
<td>338</td>
</tr>
<tr>
<td>Barkly</td>
<td>21</td>
<td>308</td>
</tr>
<tr>
<td>Darwin Rural</td>
<td>34</td>
<td>196</td>
</tr>
<tr>
<td>Darwin Urban</td>
<td>141</td>
<td>108</td>
</tr>
<tr>
<td>East Arnhem</td>
<td>39</td>
<td>226</td>
</tr>
<tr>
<td>Katherine</td>
<td>66</td>
<td>321</td>
</tr>
<tr>
<td>Overseas</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>Interstate</td>
<td>35</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>475</td>
<td>185</td>
</tr>
</tbody>
</table>

Figure 3. Rates of influenza-like illness in sentinel GP practices by week; 2012 (ASPREN data)
number of tests being performed, particularly in the primary care setting, has slowly declined since the 2009 pandemic.

The season was unusual in that it started early and finished late such that the pre-season March-April increase merged with start of the season in May and June, and the season then continued until December. The start of the season in the Centre (excluding the Top End March-April increase) was several weeks before any other jurisdiction and the end of the season in December was later than elsewhere.

The other unusual feature was that, in comparison to previous years, the non-Indigenous population was more affected. Rates were still higher in the Indigenous population but the rate ratio (1.84 adjusted) was significantly lower than previous years and much lower than during the 2009 pandemic (4.9). In addition, more non-Indigenous people were admitted to hospital than previous years, the most since hospitalisation status was first recorded in 2007.

This increase in the non-Indigenous population may have been due to a fall in vaccination rates in the non-Indigenous population or reflect the population immunity in the Indigenous population, due to vaccination campaigns and previous high rates of disease.

It is noteworthy that a significantly larger proportion of cases with influenza A/H3N2 were vaccinated compared with those with type B. This might reflect the strain drift in 2012 from the strain used for the 2012 vaccine (Perth/16/2009) to Victoria/361/2011. While the vaccine would have provided good cross-protection for this new strain, it may explain the difference and also the small increase in proportion of cases vaccinated from previous years. The Victoria/361/2011-like strain was included in the 2013 trivalent vaccine. The higher proportion of vaccine recipients among the Indigenous cases is likely to reflect the higher vaccine coverage rate.

The predominance of female cases in the Indigenous population has been noted before and is of interest. Also of note is the fact that the proportion of women of child-bearing age who were pregnant was greater than expected suggesting susceptibility to influenza infection is independent of strain type. This reinforces the need for immunisation of pregnant women.

Figure 4. Counts* of influenza-like illness presenting to NT Emergency Departments by week; 2012

*Y scale truncated at 150
In 2013, there will be further enhancement of the influenza surveillance capacity in CDC. This will include analysis of respiratory-related mortality, monitoring of call-centre data and attempting to get better information about testing data from laboratories.

Acknowledgements

CDC staff in all districts worked tirelessly to collect the extra data on laboratory-confirmed influenza cases, but in particular Lesley Scott who collects and collates the data and liaises with WHO concerning NT strain types. CDC also thanks Didier Palmer and the NT Emergency Departments for the availability of the ED data for influenza surveillance and acknowledges ASPREN, FluTracking and FluCan for their data.

References

2013 FluTracking

FluTracking, the web-based, influenza surveillance project is about to kick off again in 2013.

FluTracking is designed to detect warning signs of severe influenza outbreaks, monitor flu activity in the community and provide feedback on the effectiveness of the yearly seasonal influenza vaccine. FluTracking contributes significantly to flu surveillance in the NT by the Centre for Disease Control.

To maximise the program's benefits, and ensure that the results accurately represent the population at large, as many people as possible should be part of the survey. Enrolment takes about 30 seconds. You will then receive a weekly email during the influenza season (May to October) requiring a 10-15 second response about any symptoms of influenza-like illness you may have had in the previous week. You can use your private email address or your workplace email address. Participation is voluntary and all information will be kept strictly confidential. You may refuse to answer questions or end your participation at any time.

For those of you who participated last year, you do not need to re-enrol, but should receive an email asking you to update your details. Please click on http://www.flutracking.net to learn more about the project and enroll in the 2013 program.
An outbreak of Shiga toxin-producing *E. coli* (STEC) gastroenteritis associated with eating kangaroo - a case study from the Northern Territory

Anthony Draper, CDC, Darwin and Teem-Wing Yip, CDC, Alice Springs

Abstract

We report an outbreak of 5 cases (4 males and 1 female) of severe bloody diarrhoea in a remote Northern Territory community following their consumption of locally caught and killed kangaroo. Stool samples were obtained from 2 cases, with Shiga toxin-producing *E. coli* (STEC) being detected in 1 case.

Keywords: shiga toxin-producing *E. coli* (STEC); kangaroo; food safety; gastroenteritis; outbreak

The Outbreak

In September 2012, the Northern Territory (NT) Centre for Disease Control (CDC) was alerted to an outbreak of gastroenteritis in a remote area of the NT. The outbreak consisted of 4 males and 1 female with bloody diarrhoea, with 3 males unwell enough to warrant their transfer to the regional hospital 125km away.

Shiga toxin testing is not routine in the NT so the CDC officer on duty contacted the laboratory to ensure that the stools were tested.

The CDC officer was notified by the treating clinicians that the 5 cases were from a group of 7 who had all eaten kangaroo the day prior to onset of symptoms (attack rate = 71%). This kangaroo was killed, cooked and eaten in the remote community. Of the 5 cases, only the 3 who were transferred to hospital submitted a stool sample for analysis. Of these 3 samples, 1 was not processed due to insufficient labelling and 1 tested negative for norovirus, rotavirus, parasites and bacterial pathogens as well as testing negative for Shiga toxin-producing *E. coli* (STEC). One sample tested positive for the stx2 toxin gene produced by Shiga toxin-producing *E. coli* (STEC). Multiplex PCR testing confirmed this result.

No food sampling was conducted on the kangaroo carcass due to the remoteness of the area and the logistic barriers involved in transporting a sample. STEC was only isolated from 1 case however all 5 cases experienced concurrent bloody diarrhoea after sharing a common food source. The kangaroo meat was identified as the likely source of the Shiga toxin-producing *E. coli* (STEC).

Discussion

Shiga toxin-producing *E. coli* (STEC) are named after the potent Shiga toxins (stx1 and stx2) that they produce which can cause symptoms ranging from mild diarrhoea to heavily blood stained stools. STEC is important as it is the main diarrhoeic cause of haemolytic uraemic syndrome (HUS). As a result, it is a notifiable disease Australia-wide. Typically, 2-7% of those infected with STEC will go on to develop HUS within a week after onset of diarrhoea. HUS is a severe and life-threatening condition which can be characterised by acute microangiopathic anaemia, acute renal impairment (haematuria, proteinuria or elevated creatinine) and thrombocytopenia.

STEC was first identified as an important foodborne pathogen in 1982 in the United States of America where it was associated with undercooked beef mince. Australia’s largest outbreak occurred in 1995 in South Australia (SA) when 23 cases of HUS were associated with mettwurst that was contaminated with *E. coli* O111:NM.

As a result of this outbreak SA screens all blood-stained stools for STEC. This has resulted in a notification rate in SA of 2.58 cases per 100,000 population compared to the rest of Australia which has a notification rate of 0.32 cases per 100,000 population. It is likely that STEC is under-reported in the NT as not all blood-stained stools are screened in this jurisdiction. STEC notifications are extremely rare in the NT with only 1 or 2 per year notified (NTNDS).

The intestinal tracts of cattle and sheep are normally considered the major reservoirs of
STEC. STEC can be found in the faeces of healthy animals and animals with diarrhoea, on the hides of animals prior to slaughter and in the environment when animal manure is used as a fertiliser. A recent study from Queensland showed that Shiga-toxigenic E. coli are also carried by a number or wallaby and kangaroo species and a case study in 2007 attributed 3 cases of STEC in 1 family exposed to kangaroos and koalas at a wildlife sanctuary.

Conclusion

Kangaroo meat was epidemiologically implicated as the likely source of an outbreak of diarrhoea attributed to Shiga toxin-producing E. coli (STEC). Kangaroos have been shown to be carriers of STEC. To prevent infection with STEC, it is advisable to cook kangaroo meat completely through (e.g. to 160°F/72°C) to ensure killing of all microbes. Bacterial contamination of game meat can occur when the same knife is used to kill, clean and gut the animal and then re-used in butchering or preparation. Likewise, bacteria can spread via unwashed hands, particularly when the slaughterer then butchers or handles food immediately prior to consumption. To prevent contamination of hunted meat, clean hands and knives with soap and water. Wash hands and knives regularly while butchering an animal to avoid contaminating the carcass with dirt, insects, grass, bacteria from the gut or other contaminants.

STEC is a rare infection in the NT but is likely to be under-reported. Detection of STEC can be enhanced if all blood-stained stools are routinely screened by laboratories for pathogenic E. coli.

References

7. Hocking A. Foodborne Microorganisms of Public Health Significance. 6th ed. Waterloo (NSW); Australian Institute of Food Science and Technology Incorporated; 2003.

Updates by the Infectious Diseases Unit, Royal Darwin Hospital and Centre for Disease Control (CDC) saw the publication in 2012 of the 6th edition of the Northern Territory Guidelines for Malaria.

These Guidelines include both treatment guidelines and the public health management of malaria in the Northern Territory (NT).

Content includes:
- Initial management of malaria
- Ward monitoring and discharge plan
- Management at Hospital in the Home (HITH)
- Treatment, including prophylaxis
- Follow-up
- Public health management
- Medical Entomology investigation
- Malaria fact sheet (including Indonesian translation).

Changes in the 2012 edition

In this edition the algorithms for management of cases have been simplified and managed according to severity of disease on presentation as well as the type of malaria. The discharge plan has incorporated the capacity to discharge patients to Hospital in the Home after ensuring that the initial treatment has commenced and is being tolerated.

Prevention of life-threatening complications, particularly from *Falciparum malaria* and avoidance of transmission of the malaria parasite to mosquito vectors in the Northern Territory remain the priority in the requirement for hospital admission and public health management.

The public health response has been expanded to include the role of the CDC Malaria Surveillance Officer.

Guideline authors: Royal Darwin Hospital, Department of Infectious Diseases and Global and Tropical Health Division, Menzies School of Health Research: *Professor Bart Currie, Professor Nicholas Anstey, Professor Ric Price.*
Centre for Disease Control: *Associate Professor Vicki Krause (Director Centre for Disease Control), Dr Peter Markey, Mr Peter Whelan and Ms Lesley Scott.*

Guidelines for malaria 2012
Lesley Scott, CDC, Darwin

Measuring alcohol related harm using health department data
Steven Skov, CDC, Darwin

Abstract

This article discusses the key concepts and issues in measuring alcohol related harm from hospital admissions and emergency department presentations and also proposes a range of indicators which might be used in the Northern Territory.

Key words: alcohol; harm, indicators

Introduction

Alcohol is an integral component of most Western societies. It is greatly enjoyed as an adjunct to food and social occasions. But a great deal of harm in many forms also arises from alcohol consumption and this harm is the subject of great concern to society. In order to reduce and alleviate this harm, much effort is expended by Government and civil society in policy concerning the availability of alcohol, in education for people about appropriate use of alcohol and in responding to the various harms be they in the form of social dysfunction, antisocial behaviour, criminal activity, injuries or illness. We need to be able to measure alcohol related harms in a robust and reliable way in order to assess the overall burden of disease, the economic cost and to monitor the impact of policy interventions and programs. This article discusses the key concepts and issues in measuring alcohol related harm from hospital admissions and emergency department presentations and also proposes a range of indicators which might be used in the Northern Territory (NT).

The principal diagnosis

The information systems for both hospital admissions and Emergency Department (ED) presentations have the capacity to record the “principal diagnosis” and a large number (up to 50) secondary diagnoses. For hospital admissions, this is done by hospital coders using ICD 10 codes after the person has been discharged and the discharge summary completed by the medical officer. In EDs in the NT it is done by medical officers and for the great majority of cases, only a principal diagnosis is recorded.

Attributing cause: Population

Attributable Fractions

A limited range of health conditions are entirely attributable to alcohol consumption, for example all cases of alcohol intoxication, withdrawal or poisoning, alcoholic liver cirrhosis, and alcohol induced acute pancreatitis are entirely due to alcohol. However, such “wholly attributable” conditions only contribute a small minority of the total harm of alcohol in the community - in the NT they account for about 1% of all ED presentations – although they do make up a larger proportion of alcohol attributable deaths (e.g. due to liver cirrhosis). There is a large number of other conditions for which alcohol can be causal, but only for some of the harm. For example, it will contribute to some but not all assaults, road crashes, cancers, strokes etc. Other factors may also contribute to these conditions. Determining what proportion of these other conditions is attributable to alcohol is a challenge.

It is often thought that a common sense approach to monitoring alcohol related harm is simply for someone to record whether an event was alcohol related or not. It is possible for information systems to record whether a presentation is alcohol related. In the NT, the Gove hospital has such a system wherein the triage nurse has a compulsory data field in which he or she enters whether the presentation was alcohol related.

Such a system can be useful but they can have important limitations. Firstly, to be robust would require criteria for determining alcohol relatedness that are well informed, clear and used in the same way across all regions and
over time. Secondly any such system must be mandatory, that is it must be impossible for staff to not enter data into this field. Otherwise, the data becomes very difficult to interpret. Missing data might mean that the presentation was not alcohol related or that the staff member just did not enter it.

In academic alcohol research Population Attributable Fractions (PAFs) are used to estimate the degree to which alcohol causes various conditions. These are derived by the so-called “direct” and “indirect” methods of calculation. In the “direct” method, estimates of PAFs are made using the pooled results of case series. In contrast, the “indirect” method calculates PAFs using a statistical formula and

- the relative risk of a certain level of alcohol consumption leading to being hospitalised or dying from a particular condition based on a meta analysis of case control and cohort studies, and
- the various levels of consumption of alcohol in a specific population usually based on surveys of drinking patterns.

Generally, PAFs based on the “indirect” method are considered more robust. In case series analysis the issue remains that “alcohol relatedness” has been subjectively judged by criteria which may be unclear and certainly different in different studies. In addition, the drinking patterns in the population from which the case series was drawn may be different from the population of interest. With the “indirect” method, estimates of relative risk are more robust being based on the association between certain level of alcohol consumption and the outcome of hospitalisation or death. In addition, although the relative risks may be based on populations different to the one of interest, by using recent consumption data from the local population a PAF can be calculated which is specific to it at least in that sense.

In practice both methods are used to estimate alcohol attribution because there are many conditions for which relative risks have not been able to be calculated on the basis of case control or cohort studies and the only data available come from case series. A method has also been proposed to estimate a revised, directly derived PAF based on more recent consumption patterns. The landmark 1995 study by English calculated a broad range of PAFs for the Australian context and is still used as a key reference in Australia and internationally for PAFs, particularly for those directly derived. There have been a number of other papers which have presented both directly and indirectly calculated PAFs that are specific to other populations and/or based on more recent estimates of relative risks. There is some minor variation in these studies as to the range of conditions considered to be alcohol related and also some significant variation in the PAFs derived for the same condition.

In the health domain, the bulk of the epidemiological data available on relative risk concerns deaths and hospitalisations and so can be used to make attribution estimates in relation to deaths and hospitalisations. There is much less of this type of research in relation to emergency department presentations and it is not appropriate to simply extrapolate PAFs for hospitalisations to ED presentations. Some work has been done to estimate aetiological fractions for “all injury” presentations to EDs, including in Australia. A study by Chikritzhs in 2011 provides a comprehensive discussion of this issue, a meta-analysis of relevant Australian data and estimates a PAF for all ED injuries combined. This study estimated a PAF of 34% for all ED injury presentations in the NT.

Proxy indicators

Because of the lack of better methods of attributing cause, in many settings proxy indicators are used. For example, in some countries the lack of good data on blood alcohol levels in drivers, means that trends in alcohol related road crashes are monitored by using numbers of late night road crashes especially on weekends. While an exact figure cannot be attributed it is known and agreed that a large proportion of these crashes are alcohol related. While there are directly derived PAFs for assault hospitalisation, assault presentations to emergency departments might also be used as a proxy indicator. Other examples might include injury presentations, particularly if external cause data are available, or weekend late night presentations by young adult males.
Proxy indicators are not useful for establishing the total burden of alcohol related harms, but can be useful for monitoring trend. If the impact of alcohol related harm is declining, it should be reflected in declines in proxy indicators such as assault regardless of whether 40% or 60% of them are alcohol related.

Composite indicators

Another approach is to monitor presentations for specific conditions known to have a high PAF. However, in a small jurisdiction like the NT and especially for hospitalisations, the numbers of admissions for many of these conditions on their own may be too low for robust trend analysis. Therefore it may be possible to create composite indicators. That is combine together admissions several conditions with a high PAF conditions into “composite” which could be used for trend analysis. These might be divided into conditions which result from chronic longer term drinking and those due to acute intoxication.

Death data

Collation and analysis of death data are dependent on receiving completed data sets from the Australian Bureau of Statistics (ABS). Typically these data are only available at least 3 or 4 years in arrears. This delay limits their utility to burden of disease and economic analyses. In addition, these data are currently not available at the unit record level necessary for this type of analysis due to internal policy decisions of the ABS.

Hospitalisation data

Because of delays in coding of hospital admissions, reliable hospitalisation data are only available some time in arrears. In the NT there is about a 9 month delay. Health Gains Planning has the capacity and systems established to estimate alcohol attributable deaths and hospitalisations in the NT. This allows quantification of the total burden of disease and by using age standardised population rates also allows for comparisons between regions and trend monitoring. This may be done at a regional level and, at least with a Top End/ Central Australia split, with breakdown by Indigenous status and gender. It would seem that numbers are sufficient for stable trend analysis for hospitalisation on a 6 monthly basis.

A concern exists regarding the use of all possible conditions that might be alcohol attributable as a means to assess the impact of alcohol policies and programs. It may be that highly attributable conditions (e.g. those with a high PAF) may be more sensitive indicators to use because of the possibility that the relationship between all attributable admissions may be “diluted” by the presence of significant numbers of admissions for conditions with low PAFs.

Beyond the wholly attributable conditions, there are some conditions which are agreed to be highly related to alcohol. For example, assaults are generally assigned a directly derived PAF of 47% and road crash deaths range from 40% to 60% depending on the population. In an economic analysis of alcohol related harms in the NT, it was calculated that the PAF for assault would be 63.8% when adjusted for NT specific alcohol consumption levels.

PAFs specific to the NT were recently calculated for a broad range of conditions. Choosing an arbitrary level of 40% for PAF, there are 10 such conditions for all people in the NT and a few others for some but not all groups. See Figure.

Other high PAF conditions include:
- Rectal cancer in non-Aboriginal females
- Colon cancer and intentional self harm/ suicide in Aboriginal males
- Rectal cancer and haemorrhagic stroke in Aboriginal females.

Figure. Conditions with a PAF >=40% in all NT persons

<table>
<thead>
<tr>
<th>Oropharyngeal cancer</th>
<th>Oesophageal varices</th>
<th>Gastro oesophageal haemorrhage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oesophageal cancer</td>
<td>Unspecified liver cirrhosis</td>
<td>Chronic pancreatitis†</td>
</tr>
<tr>
<td>Liver cancer‡</td>
<td>Laryngeal cancer</td>
<td>Assault</td>
</tr>
</tbody>
</table>

*Direct attribution method
‡Indigenous females only 39%
Note that for road crashes, the NT PAFs for death are > 40% in males but for all persons the PAF for hospitalisations is less than 40%.

NT Emergency Department data

In the NT, ED presentation data are entered immediately and are available almost in real time. However, a disadvantage in most EDs including those in the NT, is that there is usually only 1 diagnostic code entered. This is a problem for injury presentations for which the nature of the most important injury will be recorded but not the cause of the injury. This greatly limits the utility of these data for injury or alcohol related harm surveillance. While the technical capacity exists to enter more diagnoses, the strong and consistent advice from the directors of EDs is that the staff do not have the time to do so and will not be able to unless extra resources are provided.

The triage nurses also record a ‘presenting problem’. They do not represent a formal medical diagnosis and consist of a combination of medical type classifications (e.g. asthma, laceration) and causes (e.g. assault, stab wound). These entries are selected from a limited list of coded possibilities but there are no formal criteria for how the presenting problem should be classified. However, in spite of these limitations, some presenting problems such as “assault” or “stab wound” may be worth monitoring as proxy trend indicators.

In the ED setting generally, PAFs have not been calculated for individual conditions. Some work has been done in Australia to quantify the proportion of injury presentations that can be attributed to alcohol. These studies have come up with estimates of 25%-30%. In the NT, this has been estimated at 34%\(^\text{10}\) (Chikritzhs 2011) although some ED staff in the NT say that it is more like 60%.

Therefore in ED data one could monitor a combination of specific conditions and proxy indicators. For example:

1. *Wholly alcohol attributable conditions* These constitute about 1% of ED presentations. Therefore total numbers, especially in the smaller hospitals are relatively small, and determining statistically significant trend is difficult.

2. *“Community” injury* This is a definition of a range of ICD-10 codes used by the Australian Institute of Health and Welfare to describe injuries likely to occur in a community setting (ICD 10 codes S00-T75, T79). It might be a proxy indicator on the basis that in the NT somewhere between 34% and 60% of such injuries are alcohol related. In general they constitute 10%-14% of all ED presentations.

3. *Presentations by 15-24 year old males after 2200 hours Thursday to Saturday nights* Similar to late night road crashes, the international literature suggests that such presentations are widely and often related to alcohol. In the NT it may be more useful as an indicator for non-Aboriginal people given the differences that exist in drinking patterns that exist. However, total numbers are relatively small and this may limit its utility for reliable analysis.

4. *Triage “presenting problem” for assault* Triage nurses are well placed to make such an assessment and the criteria issues are relatively straightforward to address technically at least. The international literature attributes 47% of assault hospitalisations and deaths to alcohol and in the NT it is estimated to be as high as 63.8%.

Analysis of trends

In the absence of unexpectedly dramatic changes in alcohol related harms, it will generally not be possible to determine whether changes in any of the potential indicators canvassed are significant for at least 12 months.

Many of the potential indicators have relatively small total numbers, especially for hospitalisations and at regional level and so detection of reliable trends will be problematic at times. In addition many of these conditions may be affected by factors other than alcohol and so there is the issue of ascribing any trend detected to changes in alcohol policy in the absence of comparison data.

Within the NT it may be possible at times to compare one region to another where there is a difference in policy or programs. An alternative
approach would be to compare NT data to other similar regions of Australia where populations and circumstances may be broadly similar, for example north Queensland or parts of Western Australia as was done in the re-evaluation of the NT Living With Alcohol (LWA) Program.14

In the absence of control regions, alcohol related indicators could be compared to the occurrence of conditions that are clearly not alcohol related. This approach was also used in the NT LWA Program re-evaluation.14

Analysis of any of these proposed hospital indicators may also be related to total presentations to ED or hospitalisations. For example, a rise or fall in a potential indicator may simply be related to a rise or fall in the population or in all presentations. Age standardised population rates can be calculated. Alternatively, indicators may be monitored as total numbers but also as a percentage of all presentations or in relation to presentations for conditions that are definitely not alcohol related, for example urinary tract infections.

Finally the trends in presentations or hospitalisations over a number of years can be observed and then projected forward from a point in time. That is an estimate can be made of expected presentations based on previous trends. If there is an intervention point in time, the expected trend afterwards can be compared with that actually observed to judge whether there has been a change after the intervention point. This method was also used in the NT LWA evaluations.

Summary of potential indicators from health data

Potential indicators for alcohol related harm to be considered include:

1. Hospitalisation data
 - All alcohol attributable hospitalisations
 - Wholly alcohol attributable admissions
 - Composite of high PAF admissions (PAF >= 40%)
 - Chronic effect (oropharyngeal cancer, oesophageal varices, gastro oesophageal haemorrhage, oesophageal cancer, unspecified liver cirrhosis, chronic pancreatitis, liver cancer, laryngeal cancer)
 - +/- wholly attributable conditions (depending on the total numbers and whether they are sufficient for robust trend analysis)
 - Acute effect (alcohol poisoning, assault, +/- self harm, +/- fire injuries), and

2. Emergency Department data
 - Wholly alcohol attributable conditions
 - Community injury
 - Presentations by 15-24 year old males after 2200 hours Thursday to Saturday nights
 - Triage “presenting problem” for assault.

Acknowledgment

With thanks to Professor Tanya Chikritzhs, National Drug Research Institute, for her assistance in preparing this document and also to Christopher Moon of the Alcohol and Other Drugs program for the conversations in recent years which have led to these indicators being developed.

References

Influenza and its prevention

What is influenza?
Influenza is a respiratory infection caused by the influenza virus of which there are 3 types; A, B and C. Types A and B cause most of the disease in humans and type A has 2 commonly occurring subtypes; H1 and H3. Influenza viruses are characterised by the way they mutate from year to year thereby forming new strains and evading the immune system. Because of this, vaccination is required annually to protect against the current influenza strains.

What is the treatment?
Treatment for influenza includes rest, increased fluids and pain relief. Anti-viral treatment can shorten the duration of illness if commenced within 48 hours of the onset of symptoms.

How is it spread?
Influenza is spread from person to person through respiratory droplets produced during coughing and sneezing. The incubation period is short, usually 1 - 3 days.

How can it be prevented?
Annual vaccination is recommended especially for those most at risk. The influenza vaccine does not contain any live virus, so people cannot catch influenza from having the vaccine. However, it does take around 2 weeks before the body is fully protected after vaccination. If you are exposed to someone with influenza infection during this time you may still become sick because your body is not yet fully protected.

To stop the spread of disease, people should cough into their upper arm or cover their mouths when coughing and wash their hands regularly. Regular hand-washing, even when not coughing, may also help to prevent influenza. People with flu symptoms should stay at home or seek medical treatment as needed.

How are the symptoms?
The presentation of influenza illness often has an abrupt onset with symptoms including; tiredness, fever, headache, chills, sore throat, loss of appetite and muscle aches. There may be an associated cough, nasal discharge and sneezing.

How serious is influenza?
The severity of influenza depends on the strain, the patient's age, previous exposure to the strain and the presence of other medical conditions. Each year those at increased risk for severe disease or dying from influenza are listed in the groups recommended for annual vaccination.

Annual Influenza Vaccination Recommendations
Who is eligible for FREE influenza vaccine?
1. All Indigenous people aged 15 years and older.
2. All non-Indigenous people aged 65 years and older.
3. All pregnant women.
4. People over 6 months of age with conditions predisposing them to complications from influenza including:
 • chronic heart disease (including congenital heart disease, coronary artery disease and valvular rheumatic heart disease)
 • chronic liver disease
 • chronic kidney disease
 • chronic lung disease (including,
bronchiectasis, emphysema and cystic fibrosis)
• severe asthma (requiring frequent hospital visits and multiple medications)
• diabetes and other chronic metabolic diseases requiring regular medical follow-up
• chronic neurological conditions that can affect respiratory function
• haemoglobinopathies
• children less than 10 yrs old on long-term aspirin therapy
• immunosuppression, immunodeficiency or are receiving high dose immunosuppressive therapy.

Groups for which influenza vaccination is recommended but not funded
1. Obesity (BMI ≥30Kg/m2)
2. Contacts of high risk patients including staff of nursing homes, long-term care facilities, all health care providers, carers of immunocompromised patients and household contacts of those in high-risk groups.
3. People travelling in large tourist groups during the influenza season.
4. Residents of nursing homes and other long-term care facilities (may be eligible for FREE vaccine if included in the groups above).
5. Homeless people
6. People working with poultry and pigs.

When to vaccinate?
The vaccine should be administered every year, as soon as it becomes available (usually mid February). Get your vaccine early in the year even if you were vaccinated late in the previous year.

Who gets 2 doses of vaccine given at least 4 weeks apart?
• Immunocompromised people and
• Children 6 months to <9 years of age who are receiving influenza vaccine for the first time.

Side effects
• Local tenderness at the injection site is common.
• Fever and malaise occur less frequently (1-10%).

People with egg allergy, including anaphylaxis, can be vaccinated in facilities where staff can recognise and treat anaphylaxis.

Influenza and pneumococcal vaccine
Recommendations for influenza vaccine in adults are similar to those for pneumococcal vaccine, and the 2 vaccines can be given at the same visit, in different sites. Parents and carers of infants and children receiving influenza and pneumococcal vaccines on the same day should be advised of the increased risk of fever and offered the option of vaccination several (3) days apart.

Further information about vaccines and funding for influenza vaccination is available from your local doctor, health centre or Centre for Disease Control. Information is also available from the Immunise Australia Program website at:
http://www.immunise.health.gov.au

<table>
<thead>
<tr>
<th>Influenza vaccination funding guideline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Free from your health care provider</td>
</tr>
<tr>
<td>All Indigenous people 15 yrs and over</td>
</tr>
<tr>
<td>All non Indigenous people 95 yrs and over</td>
</tr>
<tr>
<td>All pregnant women</td>
</tr>
<tr>
<td>All infants/people 8 months to 64 years with medical conditions predisposing them to complications from influenza as listed in this fact sheet</td>
</tr>
</tbody>
</table>

Those not in the above groups can access the vaccine by prescription through their GP.

For more information contact your nearest Centre for Disease Control.

Darwin 8922 8044 Katherine 8973 9940
Nhulunbuy 8987 0357 Tennant Creek 8962 4259
Alice Springs 8951 7540 or www.nt.gov.au/health/cdc

Influenza and its prevention
Chlamydia testing and retesting patterns at family planning clinics in Australia

Anna L. Bowring¹, Jane L. Goller¹, Maelenn Gouillou¹, Caroline Harvey¹, Deborah Bateson¹, Kathleen McNamara²,³, Christine Read⁶, Douglas Boyle⁷, Lynne Jordan⁴, Robyn Wardle⁸, Anne Stephens⁹, Basil Donovan¹⁰, Rebecca Guy¹⁰, Margaret Hellard¹,¹¹,¹²

¹Centre for Population Health, Burnet Institute, Melbourne, Vic, Australia. ²Family Planning Queensland, Brisbane, Qld, Australia. ³Family Planning New South Wales, Sydney, NSW, Australia. ⁴Family Planning Victoria, Melbourne, Vic, Australia. ⁵Family Planning and Gynaecology, Monash University, Melbourne, Vic, Australia. ⁶Lismore Family Planning, Lismore, NSW, Australia. ⁷Rural Health Academic Centre, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Shepparton, Vic, Australia. ⁸Family Planning Welfare Association, Darwin, NT, Australia. ⁹Sexual Health Information Networking and Education South Australia, Adelaide, SA, Australia. ¹⁰Kirby Institute, University of New South Wales, Sydney, NSW, Australia. ¹¹Department of Epidemiology and Preventative Medicine, Monash University, Melbourne. ¹²Nossal Institute for Global Health, University of Melbourne, Melbourne.

Sexual Health 2012, 10(1):74-81

Introduction: National guidelines recommend opportunistic chlamydia screening of sexually active 16- to 29-year-olds and encourage retesting 3–12 months after a diagnosed chlamydia (Chlamydia trachomatis) infection. We assessed chlamydia testing patterns at five Australian family planning clinics (FPCs).

Methods: Using routine clinic data from 16- to 29-year-olds, we calculated chlamydia testing and positivity rates in 2008–2009. Re-attendance, retesting and positivity rates at retesting within 1.5–4 and 1.5–12 months of a positive result were calculated.

Results: Over 2 years, 13690 individuals aged 16–29 years attended five FPCs (93% female). In 2008, 3159 females (41.4%) and 263 males (57.0%) were tested for chlamydia; positivity was 8% and 19%, respectively. In 2009, 3178 females (39.6%) and 295 males (57.2%) were tested; positivity was 8% and 23%, respectively. Of 7637 females attending in 2008, 38% also attended in 2009, of which 20% were tested both years. Within 1.5–4 months of a positive test, 83 (31.1%) females re-attended; the retesting rate was 13% and 12% retested positive. Within 1.5–12 months of a positive test, 96 (57.5%) females re-attended; the retesting rate was 36% and 13% retested positive.

Conclusions: Approximately 40% of young people attending FPCs were tested for chlamydia but a smaller proportion were tested annually or were retested following chlamydia infection. High positivity rates emphasise that FPCs see a high-risk population. To maximise testing opportunities, clinical prompts, patient reminder systems and non-clinic testing strategies may be needed.

The end of the Australia antigen? An ecological study of the impact of universal newborn hepatitis B vaccination two decades on

Bette Liu⁶, Steven Guthridge², Shu Qin Li², Peter Markey², Vicki Krause², Peter McIntyre³,⁵ Elizabeth Sullivan¹, James Ward¹, Nicholas Wood³,⁵ John M Kaldor⁶

¹Baker IDI, Alice Springs, Northern Territory, Australia. ²Northern Territory Department of Health, Darwin, Australia. ³National Centre for Immunisation Research and Surveillance, Sydney, Australia. ⁴Perinatal and Reproductive Epidemiology Research Unit, University of New South Wales, Sydney, Australia. ⁵The University of Sydney, Sydney, Australia. ⁶The Kirby Institute, University of New South Wales, Sydney, Australia

Vaccine10/2012 Nov 26: 30(50):7309-14

Background: A universal newborn hepatitis B (HBV) vaccination program was introduced in the Northern Territory of Australia in 1990, followed by a school-based catch-up program. We evaluated the prevalence of hepatitis B infection in birthing women up to 20 years after vaccination and compared this to women born before the programs commenced.

Methods: A cohort of birthing mothers was defined from Northern Territory public hospital birth records between 2005 and 2010 and linked to laboratory confirmed notifications of chronic HBV, based principally on a record of hepatitis B surface antigen detection. Prevalence of HBV was compared between women born before or after implementation of the newborn and catch-up vaccination programs.
Findings: Among 10797 birthing mothers, 138 (1.3%) linked to a chronic HBV record. HBV prevalence was substantially higher in Aboriginal women compared to non-Indigenous women (2.4% versus 0.04%; p<0.001). Among 5678 Aboriginal women, those eligible for catch-up and newborn HBV vaccination programs had a significantly lower HBV prevalence than older women born prior to the programs: HBV prevalence respectively 2.2% versus 3.5%, (OR 0.61, 95%CI 0.43-0.88) and 0.8% versus 3.5% (OR 0.21, 95%CI 0.11-0.43). This represents a risk reduction of respectively 40% and 80%.

Interpretation: The progressively greater reduction in the prevalence of chronic HBV in adult Aboriginal women coinciding with eligibility for catch-up and newborn vaccination programs is consistent with a significant impact from both programs. The use of data derived from antenatal screening to track ongoing vaccine impact is applicable to a range of settings globally.

Changes in hospitalisations for acute gastroenteritis in Australia after the national rotavirus vaccination program

Aditi Dey1,2, Han Wang1, Robert Menzies1,2, Kristen Macartney1,2.

1National Centre for Immunisation Research & Surveillance (NCIRS), Sydney, NSW. 2Discipline of Paediatrics and Child Health, University of Sydney, Sydney, NSW.

Objective: To evaluate the impact of the Australian rotavirus vaccination program on both rotavirus and all-cause acute gastroenteritis (AGE) hospitalisations and to compare outcomes in Indigenous and non-Indigenous people.

Design and setting: Retrospective analysis of the Australian Institute of Health and Welfare National Hospital Morbidity database for hospitalisations coded as rotavirus and all-cause AGE, between 1 July 2001 and 30 June 2010.

Main outcome measures: Age-specific hospitalisation rates in Indigenous and non-Indigenous people, before and after the introduction of the vaccine program in July 2007.

Results: There was a 71% decline in rotavirus-coded hospitalisations of children aged < 5 years between periods before and after rotavirus vaccination (from 261 per 100,000 to 75 per 100,000). There was also a 38% decline in non-rotavirus coded AGE hospitalisations (from 1419 per 100,000 to 880 per 100,000). This represented more than 7700 hospitalisations of children aged < 5 years being averted in the financial year 2009-10. Reductions were also observed in the 5-19-years age group, suggesting that transmission of virus was reduced at a population level. Decreases in hospitalisations of Indigenous children were smaller than those for the general population, and fluctuated by location and year.

Conclusions: These data show a sustained and substantial decline in severe rotavirus disease and all-cause AGE since the introduction of rotavirus vaccination, most pronounced in the target age group, but with evidence of herd immunity. The impact of rotavirus vaccination in Indigenous children in hyperendemic settings was less remarkable.

Frequent occurrence of undiagnosed pelvic inflammatory disease in remote communities of central Australia

Bronwyn J Silver1, Janet Knox2, Kirsty S Smith3, James S Ward4, Jacqueline Boyle5, Rebecca J Guy4, John Kaldor2 and Alice R Rumbold1,5.

1Epidemiology and Health Systems, Menzies School of Health Research, Alice Springs, NT. 2The Kirby Institute for Infection and Immunity in Society, University of New South Wales, Sydney, NSW. 3Preventative Health, Baker IDI Heart and Diabetes Institute, Alice Springs, NT. 4Jean Hailes Foundation for Women's Health, Monash University, Melbourne, VIC. 5Obstetrics and Gynaecology, University of Adelaide, Adelaide, SA.

Objective: To assess the extent of diagnosed and undiagnosed pelvic inflammatory disease (PID) in Aboriginal women in remote central Australia.

Design, setting and subjects: Retrospective cross-sectional study in five remote central Australian primary health care centres. Medical records of all resident Aboriginal women aged 14–34 years were examined. Data were from presentations with documented lower abdominal pain, excluding other causes, for 2007–2008.
Main outcome measures: PID investigations undertaken, PID diagnoses made, recommended treatment, and presentations meeting the guideline criteria for diagnosing PID based on pelvic examination, symptom profile or history.

Results: Of 655 medical records reviewed, 119 women (18%) presented 224 times with lower abdominal pain. Recommended investigations to diagnose PID were infrequently undertaken: bimanual examination (15 cases [7%]); testing for gonorrhoea and chlamydia (78 [35%]); and history taking for vaginal discharge (59 [26%]), intermenstrual bleeding (27 [12%]) and dyspareunia (17 [8%]). There were 95 presentations (42%) consistent with guidelines to diagnose PID, most (87 [39%]) based on symptom profile and history. Of these, practitioners made 15 diagnoses of PID, and none had the recommended treatment documented.

Conclusion: Pelvic inflammatory disease occurred frequently among Aboriginal women in central Australia during the study period but was vastly underdiagnosed and poorly treated. Undiagnosed or inadequately treated PID leads to poorer reproductive health outcomes in the long term. Increased awareness of PID symptoms, diagnosis and treatment and a revision of the guidelines is needed to improve detection and management of PID in this high-risk setting.

Experimental comparison of aerial larvicides and habitat modification for controlling disease-carrying Aedes vigilax mosquitoes

Siobhan C de Little, Grant J Williamson, David MJS Bowman, Peter I Whelan, Barry W Brook and Corey JA Bradshaw

1The Environment Institute and School of Earth and Environmental Sciences, The University of Adelaide, Adelaide, South Australia, Australia. 2Department of Plant Science, University of Tasmania, Hobart, Tasmania, Australia. 3Medical Entomology, Centre for Disease Control, Department of Health and Families, Casuarina, Northern Territory, Australia. South Australia Research and Development Institute, 4Henley Beach, South Australia, Australia.

Pest Manag Sci 2012; 68: 709 - 717

Background: Microbial and insect-growth-regulator larvicides dominate current vector control programmes because they reduce larval abundance and are relatively environmentally benign. However, their short persistence makes them expensive, and environmental manipulation of larval habitat might be an alternative control measure. Aedes vigilax is a major vector species in northern Australia. A field experiment was implemented in Darwin, Australia, to test the hypotheses that (1) aerial microbial larvicide application effectively decreases Ae. vigilax larval presence, and therefore adult emergence, and (2) environmental manipulation is an effective alternative control measure. Generalised linear and mixed-effects modelling and information theoretic comparisons were used to test these hypotheses.

Results: It is shown that the current aerial larvicide application campaign is effective at suppressing the emergence of Ae. vigilax, whereas vegetation removal is not as effective in this context. In addition, the results indicate that current larval sampling procedures are inadequate for quantifying larval abundance or adult emergence.

Conclusions: This field-based comparison has shown that the existing larviciding campaign is more effective than a simple environmental management strategy for mosquito control. It has also identified an important knowledge gap in the use of larval sampling to evaluate the effectiveness of vector control strategies.

NT NOTIFICATIONS OF DISEASES BY ONSET DATE & DISTRICTS

1 January – 31 December 2012 & 2011

<table>
<thead>
<tr>
<th>Disease</th>
<th>Alice Springs</th>
<th>Barkly</th>
<th>Darwin</th>
<th>East Arnhem</th>
<th>Katherine</th>
<th>N T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute post strep glomerulonephritis</td>
<td>4</td>
<td>11</td>
<td>0</td>
<td>7</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>Adverse vaccine reaction</td>
<td>15</td>
<td>12</td>
<td>1</td>
<td>3</td>
<td>38</td>
<td>30</td>
</tr>
<tr>
<td>Amoebiasis</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Arbovirus - not otherwise specified</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Barmah Forest</td>
<td>6</td>
<td>11</td>
<td>2</td>
<td>0</td>
<td>48</td>
<td>69</td>
</tr>
<tr>
<td>Campylobacteriosis</td>
<td>32</td>
<td>34</td>
<td>4</td>
<td>2</td>
<td>102</td>
<td>133</td>
</tr>
<tr>
<td>Chickenpox</td>
<td>29</td>
<td>37</td>
<td>14</td>
<td>3</td>
<td>65</td>
<td>62</td>
</tr>
<tr>
<td>Chlamydia</td>
<td>444</td>
<td>669</td>
<td>41</td>
<td>39</td>
<td>1259</td>
<td>1359</td>
</tr>
<tr>
<td>Chlamydial conjunctivitis</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>11</td>
<td>8</td>
</tr>
<tr>
<td>Ciguatera</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Congenital Rubella</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Cryptosporidiosis</td>
<td>38</td>
<td>32</td>
<td>0</td>
<td>8</td>
<td>34</td>
<td>157</td>
</tr>
<tr>
<td>Dengue</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>27</td>
<td>79</td>
</tr>
<tr>
<td>Diphtheria</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Food water borne disease</td>
<td>11</td>
<td>2</td>
<td>1</td>
<td>7</td>
<td>0</td>
<td>24</td>
</tr>
<tr>
<td>Gastro - related cases</td>
<td>50</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gonococcal conjunctivitis</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Gonococcal infection</td>
<td>1059</td>
<td>719</td>
<td>74</td>
<td>45</td>
<td>369</td>
<td>401</td>
</tr>
<tr>
<td>Gonococcal reonate ophthalmia</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Group A streptococcal invasive</td>
<td>13</td>
<td>18</td>
<td>6</td>
<td>4</td>
<td>21</td>
<td>34</td>
</tr>
<tr>
<td>Hepatitis A</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Hepatitis B - chronic</td>
<td>23</td>
<td>46</td>
<td>1</td>
<td>2</td>
<td>35</td>
<td>31</td>
</tr>
<tr>
<td>Hepatitis B - new</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Hepatitis B - unspecified</td>
<td>49</td>
<td>46</td>
<td>3</td>
<td>2</td>
<td>97</td>
<td>147</td>
</tr>
<tr>
<td>Hepatitis C - new</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Hepatitis C - unspecified</td>
<td>33</td>
<td>31</td>
<td>0</td>
<td>1</td>
<td>164</td>
<td>192</td>
</tr>
<tr>
<td>H Influenza</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>H Influenza non-b</td>
<td>6</td>
<td>7</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>HAV</td>
<td>0</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>27</td>
</tr>
<tr>
<td>HTLV1 asymptomatic/unspecified</td>
<td>49</td>
<td>61</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Haemolytic uraemic syndrome</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Hydatid</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Influenza</td>
<td>267</td>
<td>152</td>
<td>11</td>
<td>18</td>
<td>180</td>
<td>196</td>
</tr>
<tr>
<td>Kunjin Virus</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Legionellosis</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Leprosy</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Leptospirosis</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Listeriosis</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Malaria</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>23</td>
<td>12</td>
</tr>
<tr>
<td>Measles</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Melioidosis</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>41</td>
<td>65</td>
</tr>
<tr>
<td>Meningococcal infection</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Murray Valley encephalitis</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Non TB Mycobacteria</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>Pertussis</td>
<td>32</td>
<td>5</td>
<td>3</td>
<td>0</td>
<td>307</td>
<td>230</td>
</tr>
<tr>
<td>Pneumococcal disease</td>
<td>79</td>
<td>39</td>
<td>6</td>
<td>6</td>
<td>31</td>
<td>24</td>
</tr>
<tr>
<td>Q Fever</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rheumatic Fever</td>
<td>21</td>
<td>32</td>
<td>0</td>
<td>2</td>
<td>20</td>
<td>42</td>
</tr>
<tr>
<td>Ross River Virus</td>
<td>19</td>
<td>6</td>
<td>4</td>
<td>1</td>
<td>132</td>
<td>189</td>
</tr>
<tr>
<td>Rotavirus</td>
<td>96</td>
<td>37</td>
<td>6</td>
<td>10</td>
<td>31</td>
<td>47</td>
</tr>
<tr>
<td>Salmonellosis</td>
<td>88</td>
<td>91</td>
<td>7</td>
<td>13</td>
<td>238</td>
<td>255</td>
</tr>
<tr>
<td>Shigellosis</td>
<td>42</td>
<td>66</td>
<td>6</td>
<td>15</td>
<td>21</td>
<td>18</td>
</tr>
<tr>
<td>STEC/VTEC</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Strongyloidiasis dissem</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Syphilis <2y</td>
<td>7</td>
<td>8</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Syphilis >2y or unknown</td>
<td>17</td>
<td>10</td>
<td>3</td>
<td>2</td>
<td>27</td>
<td>49</td>
</tr>
<tr>
<td>Trichomoniasis</td>
<td>962</td>
<td>657</td>
<td>124</td>
<td>75</td>
<td>742</td>
<td>817</td>
</tr>
<tr>
<td>Tuberculosis</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>28</td>
<td>34</td>
</tr>
<tr>
<td>Typhoid</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Typhus</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Varicella - unspecified</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Vibrio food poisoning</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Vibrio invasive</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Yersiniosis</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Zoster</td>
<td>34</td>
<td>29</td>
<td>4</td>
<td>1</td>
<td>115</td>
<td>161</td>
</tr>
</tbody>
</table>

| **Total** | 3890 | 2905 | 234 | 77 | 4295 | 4882 |

The Northern Territory Disease Control Bulletin Vol 20, No. 1, March 2013
Ratio of the number of notifications in 2012 to the mean 2007-2011: selected diseases

- Dengue
- Cryptosporidiosis
- Rheumatic Fever
- Melioidosis
- Zoster
- Acute Post Strep GN
- Pertussis
- Barmah Forest
- Tuberculosis
- Shigellosis
- Hepatitis A
- Pneumococcal disease
- Adv Vacc Reaction
- Campylobacteriosis
- Salmonellosis
- Malaria
- Ross River Virus
- Meningococcal infection
- Rotavirus
- Influenza

Ratio of the number of notifications in 2012 to the mean 2007-2011: sexually transmitted diseases

- HIV
- Hepatitis B - unspec
- Syphilis
- HTLV1 asyptom/unspec
- Gonococcal infection
- Chlamydia
- Hepatitis C - unspec
- Trichomoniasis
- Hepatitis B - new
- Hepatitis B - unspec

Beyond 2SD of mean of previous 5 years

Beyond 2SD of mean of 5 previous years
Comments on notifications for 2012 p 29

Rotavirus

Despite a moderate increase in cases throughout the Northern Territory in August 2012, the absence of any sustained outbreak resulted in fewer than expected overall rotavirus notifications in 2012. This follows the years 2009 and 2010 where considerably larger outbreaks were experienced and 2011 when more disease was reported throughout the year in addition to an August peak. Over 75% of cases occurred in children aged <2 years with Indigenous children over-represented. Vaccine coverage was about 80% in the <2 year olds.

Acute Rheumatic Fever

There were 120 cases of acute rheumatic fever notified in 2012. This is almost twice the expected number of 68 cases calculated as the mean of the past 5 years. This is noted along with an increase in invasive group A streptococcus in the NT in 2012. The increase also reflects improved case detection due to health promotion activities by the NT RHD Control Program.

Hepatitis B unspecified

There were 327 cases of hepatitis B unspecified in 2012 compared with an expected 164 when looking at the mean of the past 5 years. This increase is still being investigated but is likely to be partly due to the screening of irregular maritime arrivals who have high rates of hepatitis B infection.

Dengue

There were 89 cases of dengue notified in 2012, the highest since 2000 and 2.6 times the expected number of 34. There were 50 cases acquired in Indonesia (mainly Bali) compared to 23 cases in 2011 and 26 cases acquired in East Timor compared with 4 cases in 2011. This reflects both the increasing travel to these countries and the increase in dengue transmission which is occurring in the region.

Cryptosporidiosis

There were 238 cryptosporidiosis cases reported in 2012 which is 2.1 times higher than the 5 year mean. The majority (196) of these were reported between January and May.

There were 6 outbreaks and 3 clusters of cryptosporidiosis during this period with childcare centres and swimming pools implicated. In 2012, 74% of cases were reported in the 0-4 year old age group.

This serves as a reminder to comply with recommended exclusion periods from child care, school, work or public swimming pools when suffering from gastroenteritis to prevent spread of disease. Furthermore, a shift away from traditional microscopic diagnosis to more sensitive antigen detection tests may have contributed to increased laboratory detection of *Cryptosporidium* species in 2012.

Haemophilus influenzae non-b

There were 12 cases of non type-b invasive *Haemophilus influenzae* in 2012, which was 1.6 times the expected 5 year mean of 7.4 and equal to the previous highest year (2006). Typing of the isolates is not yet complete but 6 were documented as untypeable and all of these were from Central Australia. There is increasing interest in disease due to untypeable *H influenzae*.

HIV

The increase in HIV notification was mainly due to 14 new diagnoses in irregular maritime arrivals sent to the Immigration Detention Centres in Darwin. Additionally an increased number of cases were in immigrants arriving in Australia with HIV, as well as in cases who acquired HIV while travelling to high prevalence countries. However, of the 22 cases who were not IMAs all but 1 featured the recognised risk factors for HIV.
Immunisation coverage rates for NT children by regions based on Medicare address postcode as estimated by the Australian Childhood Immunisation Register are shown on page 32.

Background information to interpret coverage

Winnellie PO Bag is postcode 0822, which includes most Darwin Rural District communities, some East Arnhem District communities and some people who live in the Darwin ‘rural area’ who collect mail from the Virginia store or Bees Creek. Alice Springs PO Bag is postcode 0872, which includes Alice Springs District, Nganampa and Ngaanyatjarra communities.

The cohort of children assessed at 12 to <15 months of age on 31 December 2012 were born between 1 July 2011 and 30 September 2011 inclusive. To be considered fully vaccinated, these children must have received 3 valid doses of vaccines containing diphtheria, tetanus, pertussis, and poliomyelitis antigens, either 2 or 3 doses of PRP-OMP Hib or 3 doses of another Hib vaccine, and 3 doses of hepatitis B vaccine. All vaccinations must have been administered by 12 months of age.

The cohort of children assessed at 24 to <27 months of age on 31 December 2012 were born between 1 July 2010 and 30 September 2010 inclusive. To be considered fully vaccinated, these children must have received 4 or 5 valid doses of vaccines containing diphtheria, tetanus, pertussis antigens, 4 doses of poliomyelitis vaccine and 2 valid doses of MMR vaccine. All vaccinations must have been administered by 60 months (5 years) of age.

The cohort of children assessed at 60 to <63 months of age on 30 September 2012 were born between 1 July 2007 and 30 September 2007 inclusive. To be considered fully vaccinated, these children must have received 4 or 5 valid doses of vaccines containing diphtheria, tetanus, pertussis, 3 doses of vaccines containing poliomyelitis antigens, either 3 or 4 doses of PRP-OMP Hib or 4 doses of another Hib vaccine, and 3 doses of hepatitis B vaccine and 1 dose of measles-mumps-rubella (MMR) vaccine. All vaccinations must have been administered by 24 months of age.

Interpretation and comment

Immunisation coverage in NT children was above the national average across the 24 to <27 months cohort (93.6% NT and 92.6% National) though lower than the national average in the 12 to <15 (90.5% NT and 91.6% National) and 60 to <63 months cohorts (90.5% NT and 91.6% National).

Further information about the Australian Childhood Immunisation Register coverage may be found at: http://ncirs.edu.au/immunisation/coverage/index.php
Immunisation coverage for children aged 12-<15 months at 31 December 2012

<table>
<thead>
<tr>
<th>Number in district</th>
<th>%DTP</th>
<th>%Polio</th>
<th>%HIB</th>
<th>%HEP B</th>
<th>% Fully vaccinated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Darwin</td>
<td>321</td>
<td>89.4%</td>
<td>89.4%</td>
<td>89.1%</td>
<td>88.5%</td>
</tr>
<tr>
<td>Winnellie PO Bag</td>
<td>66</td>
<td>95.5%</td>
<td>95.5%</td>
<td>95.5%</td>
<td>95.5%</td>
</tr>
<tr>
<td>Palmerston/Rural</td>
<td>246</td>
<td>91.9%</td>
<td>91.9%</td>
<td>91.9%</td>
<td>91.9%</td>
</tr>
<tr>
<td>Katherine</td>
<td>102</td>
<td>93.1%</td>
<td>93.1%</td>
<td>93.1%</td>
<td>93.1%</td>
</tr>
<tr>
<td>Barkly</td>
<td>13</td>
<td>92.3%</td>
<td>92.3%</td>
<td>92.3%</td>
<td>92.3%</td>
</tr>
<tr>
<td>Alice Springs</td>
<td>130</td>
<td>86.9%</td>
<td>86.9%</td>
<td>86.9%</td>
<td>86.9%</td>
</tr>
<tr>
<td>Alice Springs PO Bag</td>
<td>50</td>
<td>90.0%</td>
<td>90.0%</td>
<td>90.0%</td>
<td>90.0%</td>
</tr>
<tr>
<td>East Arnhem</td>
<td>45</td>
<td>95.6%</td>
<td>95.6%</td>
<td>95.6%</td>
<td>95.6%</td>
</tr>
<tr>
<td>NT Total</td>
<td>973</td>
<td>90.9%</td>
<td>90.9%</td>
<td>90.8%</td>
<td>90.5%</td>
</tr>
<tr>
<td>Australia Total</td>
<td>75,718</td>
<td>92.1%</td>
<td>92.0%</td>
<td>91.7%</td>
<td>91.6%</td>
</tr>
</tbody>
</table>

Immunisation coverage for children aged 24-<27 months at 31 December 2012

<table>
<thead>
<tr>
<th>Number in district</th>
<th>%DTP</th>
<th>%Polio</th>
<th>%HIB</th>
<th>%HEP B</th>
<th>%MMR</th>
<th>% Fully vaccinated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Darwin</td>
<td>273</td>
<td>93.4%</td>
<td>93.4%</td>
<td>94.1%</td>
<td>92.3%</td>
<td>93.0%</td>
</tr>
<tr>
<td>Winnellie PO Bag</td>
<td>70</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
<tr>
<td>Palmerston/Rural</td>
<td>247</td>
<td>95.5%</td>
<td>95.5%</td>
<td>95.1%</td>
<td>94.7%</td>
<td>94.3%</td>
</tr>
<tr>
<td>Katherine</td>
<td>85</td>
<td>97.6%</td>
<td>97.6%</td>
<td>97.6%</td>
<td>97.6%</td>
<td>97.6%</td>
</tr>
<tr>
<td>Barkly</td>
<td>13</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
<tr>
<td>Alice Springs</td>
<td>113</td>
<td>92.0%</td>
<td>92.0%</td>
<td>92.0%</td>
<td>92.0%</td>
<td>91.2%</td>
</tr>
<tr>
<td>Alice Springs PO Bag</td>
<td>65</td>
<td>96.9%</td>
<td>96.9%</td>
<td>96.9%</td>
<td>96.9%</td>
<td>96.9%</td>
</tr>
<tr>
<td>East Arnhem</td>
<td>66</td>
<td>95.5%</td>
<td>95.5%</td>
<td>95.5%</td>
<td>97.0%</td>
<td>95.5%</td>
</tr>
<tr>
<td>NT Total</td>
<td>932</td>
<td>95.2%</td>
<td>95.2%</td>
<td>95.3%</td>
<td>94.6%</td>
<td>94.7%</td>
</tr>
<tr>
<td>Australia Total</td>
<td>76,105</td>
<td>94.9%</td>
<td>94.8%</td>
<td>95.0%</td>
<td>94.4%</td>
<td>94.0%</td>
</tr>
</tbody>
</table>

Immunisation coverage for children aged 60-<63 months at 31 December 2012

<table>
<thead>
<tr>
<th>Number in district</th>
<th>%DTP</th>
<th>%Polio</th>
<th>%MMR</th>
<th>% Fully vaccinated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Darwin</td>
<td>265</td>
<td>84.2%</td>
<td>85.3%</td>
<td>83.8%</td>
</tr>
<tr>
<td>Winnellie PO Bag</td>
<td>67</td>
<td>97.0%</td>
<td>97.0%</td>
<td>97.0%</td>
</tr>
<tr>
<td>Palmerston/Rural</td>
<td>231</td>
<td>92.2%</td>
<td>91.8%</td>
<td>91.8%</td>
</tr>
<tr>
<td>Katherine</td>
<td>81</td>
<td>97.5%</td>
<td>96.3%</td>
<td>96.3%</td>
</tr>
<tr>
<td>Barkly</td>
<td>21</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
<tr>
<td>Alice Springs</td>
<td>116</td>
<td>89.7%</td>
<td>89.7%</td>
<td>89.7%</td>
</tr>
<tr>
<td>Alice Springs PO Bag</td>
<td>55</td>
<td>96.4%</td>
<td>92.7%</td>
<td>92.7%</td>
</tr>
<tr>
<td>East Arnhem</td>
<td>42</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
<tr>
<td>NT Total</td>
<td>878</td>
<td>91.1%</td>
<td>91.0%</td>
<td>90.5%</td>
</tr>
<tr>
<td>Australia Total</td>
<td>78,616</td>
<td>92.4%</td>
<td>92.3%</td>
<td>91.9%</td>
</tr>
</tbody>
</table>
NT malaria notifications October—December 2012
Elizabeth Stephenson, CDC, Darwin

There were 6 cases of malaria notified in the 4th quarter of 2012. The following table provides details about where the infection was thought to be acquired, the infecting agent, whether chemoprophylaxis was used and where the patient lived.

<table>
<thead>
<tr>
<th>No. cases</th>
<th>Origin of infection</th>
<th>Reason exposed</th>
<th>Agent</th>
<th>Chemoprophylaxis</th>
<th>NT region</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Sudan</td>
<td>Expatriates visiting relatives</td>
<td>P. falciparum</td>
<td>2</td>
<td>Alice Springs</td>
</tr>
<tr>
<td>1</td>
<td>Tanzania</td>
<td>Expatriate visiting relatives</td>
<td>P. falciparum</td>
<td>Nil</td>
<td>Darwin</td>
</tr>
<tr>
<td>1</td>
<td>Indonesia</td>
<td>Expatriate visiting relatives</td>
<td>P. vivax</td>
<td>Nil</td>
<td>Darwin</td>
</tr>
<tr>
<td>1</td>
<td>India</td>
<td>Expatriate visiting home</td>
<td>P. vivax</td>
<td>Nil</td>
<td>Darwin</td>
</tr>
</tbody>
</table>

Congratulations to **Greta Enbon**, Sexual Health Coordinator and partner on the birth of their baby boy – Gus in January.

Thank you to **Christina Spinella** who has worked in Administration in Darwin on the Vacation Employment Program. We wish her well in her final year of her Speech Pathology degree.

Justine Glover, Senior Policy and Coordination Officer has completed her 6 months secondment to the Health Minister’s office as Department Liaisons Officer. Many thanks to **Jennifer Fry**, Community Paediatrics Project Officer, for acting in the Senior Policy and Coordination Officer position. **Jennifer Fry**, has resigned after 12 months to move with her family to Victoria.

Alice Springs

Rebecca Curr, Public Health Nurse (Immunisation), has returned to her position at Alice Springs CDC after a short absence.

Kaylene Prince, Public Health Nurse, has moved to the position of Infection Control Nurse at Alice Springs Hospital.

Congratulations to **Nina Missen**, Central Australia Rheumatic Heart Disease Register Coordinator and her partner, on the birth of their baby Marshall Eli Lord on 10 January 2013. Nina was also successful in securing the Coordinator position but is currently on maternity leave.
THE NORTHERN TERRITORY DISEASE CONTROL BULLETIN
CUMULATIVE INDEX
Vol. 1 Nos. (1-10) to Vol 20 No. 1 (Nov 1991 – March 2013)

Trachoma 2(7), 3(1)
Australian Sentinel Practice Research Network 1(3)
Australian Society for Infection Diseases [Conference report]
Annual Scientific Meeting, Brisbane, April 27-30 1996 3(2)
Bacterial antigen detection kits 5(1)
Barcoo rot 2(5)
Barmah Forest virus 1(4), 14(2)
Bats East Arnhem 3(4)
 Flying fox alert 7(2)
 Lyssavirus (see lyssavirus)
Beetle-induced blistering dermatitis 2(7)
Benzathine Penicillin G (BPG) 2(6); 13(2)
Beyond GAA to Healthy Under 5 Kids in the Bush 15(4)
Helicin AP 2(5)
Helicin LA 5(3); 9(1); 13(2)
Birthday card for 4 year olds/Immunisation Reminder 19(4)
Bites and stings in the Top End and how to avoid them 12(5)
Biting midges or ‘Skeeters’ in the Northern Territory 19(3)
Box jellyfish 1(3); 2(7); 5(3); 7(4); 9(4); 14(4); 15(4); 17(1); 19(3)
Blood collection [memorandum] 4(1)
Book Review: 11(2)
‘Brandied’: drama production 2(7)
Breast cancer
Breast Cancer Month and Pink Ribbon Day 8(3)
BreastScreen NT 8(2)
Incidence following round one mammography screening (Dec 1994-1997) 6(4)
Investigation of the sudden increase in breast cancer deaths in the Northern Territory in 1999 9(3)
Campylobacter 1(6)
Canis familiaris: Fatal outcome following a ‘dog bite’ 9(2)
Cardiovascular disease
Aspirin 5(2)
Cardiovascular risk and cholesterol reduction 4(3)
Treating lipids 4(1)
Case finding and contact tracing – Fundamentals needed for good communicable disease control 9(2)
Centre for Disease Control Northern Territory
Centre for Disease Control Conference 4 – 6 September 2012 19(3)
CDC-GF Strengthening the Links 13(4)
Central line infection 1(9)
Cerebral palsy
Hip surveillance in children with cerebral palsy in the NT 19(2)
Cervical cancer
Achievements in cervical cancer screening in the NT 8(3)
Cervical cancer vaccination - Human Papilloma Virus Vaccination Program launched 14(1)
Screening in the Northern Territory 7(4)
Chickenpox (see varicella)
Chikungunya disease 10(1); 11(3)
Child health/Child care
Ear project 4(1)
Exclusions 13(3); 2(4)
Factors affecting hepatitis A vaccination uptake among childcare workers in the NT 8(3)
Immunisation records 2(4)
New Child Health Team 11(1)
New NT child car restraint laws 19(4)
Potential for disease outbreaks 2(6)
Chlamydia (see sexually transmitted diseases)
Cholera
Vibrios and liver disease are a dangerous combination. A case of fatal non-
 toxigenic Vibrio cholerae 12(4)
Chronic Diseases Network 4(2); 5(2)
Ciguatera 1(1); 5(4),

Department of Health www.health.gov.au
The Northern Territory Disease Control Bulletin

Index

Ciguatera (Fish Poisoning) - Fact sheet 15(4)
Reporting of Ciguatera Food Poisoning 13(3)

Climate change
Climate change 15(4)
Climate change: Why should health professionals care? 16(4)

Clinic 34
Clinic 34 new location in Mitchell St 1(2)
Clinic 34 - on the move 10(4)
Clinic 34 survey 2004 11(4)
Is it a good move? A review of Darwin Clinic 34’s attendance data
and client profile in relation to relocation to the CBD 12(4)

Closing the gap
Closing the gap – targets for indicator diseases 15(4)
Closing the gap – the challenge 15(4)

COAD
Clinical management and continuity of care COAD project 4(4)
Recent guidelines and local initiatives 9(2)

Cockroach control in the NT 6(1)
Coccidiosis in poultry - when it is non-infectious 11(3)
Cold chain (see immunisation)

Community education
The invisible and unknown battle 7(4)

Conference
Centre for Disease Control Conference 4-6 September 2012 19(3)
Upcoming conferences 19(4)

Congenital syphilis
Congenital syphilis: revised protocol for management and re-establishment
of follow-up register in the Darwin region 12(5)
Revised guidelines for the investigation and treatment in the Top End of the
NT 5(4)

Counter Disaster
Public Health Group - Region 1: Counter Disaster Plan (2007) 14(4)

Coxsackievirus B 2(1)
Coxsackievirus B 2(1)

Cryptosporidium
Alleys 292
Cryptosporidiosis: will it happen this wet season? 9(4)
Darwin 8(1), 10(2)
East Arnhem 6(4)
Outbreak in Darwin and Palmerston 9(1)

Dangers of drugs circulated as “enhancing sexual function” or “herbal
vagina” 15(4)

Dengue
Case reports 2(5)
Community can help eliminate dengue mosquitoes in Tennant Creek: Media
release 19(4)
Dengue fever 1(7)
Dengue fever in northern Australia— a bit of history 17(4)
Dengue mosquitoes in Groote Eylandt - Fact sheet 13(4)
Dengue Mosquito eradication on Groote Eylandt 15(2)
Dengue 3 in Caris 4(4)
Groote Eylandt remains dengue vector free 16(1)
Increase in Dengue Fever notifications in visitors to East Timor 7(1)
Information sheet 7(1)
Letter to the editor 16(1)
Northern Territory is dengue virus and dengue fever free. Has been since
the 1950s 12(2)
Notification reminder to clinicians 7(1)
Public health and interpretation of serology results 7(1)

Diabetes
Control and Complications Trial 3(2)
New diagnostic criteria and NT AUSDiab results 8(1)

Diphtheria 14(5), 2(5)
Guidelines for the control of diphtheria in the NT 5(2)

Disaster management
After the earthquake Nias, Indonesia. March 28- April 18 12(2)
Cleaning up floodwater 14(1)
Disaster management 5(1)
Infection control and waste management at the Zainoel Abidin Hospital,
Banda Aceh, April 2005 12(2)
Reopening a hospital in Banda Aceh 12(3)
The Aceh response - a personal account 12(2)
The Big Wet. Kimberljnlnja (Cenc6l), Jabiru Outstations (Patonga &
Mudgbarri), Corroboree, Marrakai and Adelaide River Township

Disease control staff updates (each issue)

Donovanosis
Azithromycin in NSW Queensland 3(2)

Azithromycin trial 2(2)
Drowning related deaths in the NT with alcohol involvement 16(4)

Drug resistance
Antimicrobial resistance in healthcare settings 9(2)
VRE or not VRE - always ask twice... or thrice... 9(2)

East Timor
A volunteer doctor in East Timor 15(2)
East Timor AusAID Mosquito Project 13(3)
Evacuations in Darwin, September 1999 6(3)
Evacuations in Darwin - 1999 7(2)
Measles outbreak amongst evacuees in Darwin, 1999 7(5)
NT assists with leprosy survey in Timor 16(1)

Echovirus type 30 meningitis 2(1)

Editorials
Editorial on measles. Everyone needs to be immune 18(4)
For A Case of Plasmodium Ovalis 12(4)
Gearing up to protect our children 14(2)

RHD Control Program 18(1)

Updated Leprosy Guidelines 18(1)

Effluent outfall (see Environmental Health)

Enteric disease (see Outbreaks, Salmonella)

A look at enteric disease in the NT during 2011 from the OzFoodNet
perspective 19(3)
An investigation of a cluster of Salmonella Osaka cases 14(3)
Burge Bellly. A gastrointestinal illness outbreak on a cruise to sea 11(3)
Campylobacter 11(3), 14(3)
Care investigation 1 (6), 19(3), 27(3)
Considerations around an increase of Salmonella Mbandaka notifications
in the Top End 9(2)
Cryptosporidiosis 9(4), 10(2)
Erectile diseases in the NT 11(2) 11(3)
Gastroenteritis [brief report] 6(2), 10(2)
Gastroenteritis in Aged Care Facilities 14(3)
Gastroenteritis Outbreak at Workshop 13(3)
Gastroenteritis outbreak due to Salmonella enterica 10(3)
Gastroenteritis outbreak due to Salmonella Typhi 10(4)
Hafnia alvei-a possible cause of gastroenteritis? 17(4)
Northern Territory OzFoodNet Highlights for 2005 13(2)
NT OzFoodNet Highlights for 2003 11(1)
Norovirus outbreak in school travelling through Central Australia 18(2)
NT Quarterly report 10(2), 10(3), 10(4)
Outbreak of gastrointestinal illness at a remote mine site 12(1)
Outbreak of norovirus gastrointestinal illness at Robertson Barracks 13(2)
Rotavirus 2(2)
Summary 1991 15(5)
Salmonella Balla outbreak in the NT, May-August 2002 9(3)
Salmonella Paratyphi B var Java in a child and their pet turtle 14(3)
The Northern Territory OzFoodNet Site - A Summary of 2008 16(1)
What is environmental Salmonella? 12(4)

Environmental Health
Environmental Health Fact Sheet: First yellow 18(4)
Environmental Health Officers, role of 11(1)
Environmental Health Program 2003-2004 13(3)
Financial & Other Body Fluid Accident Policy: Action to be taken following
contamination 11(2)
Food Bill 2003 11(1)
Fly control: Environmental Health fact sheet
Guidelines for the Design, Operation, Management and Maintenance
of Aquatic Facilities 13(2)
Hazardous Foods - Cooling and Reheating 13(2)
Information for food handlers 13(3)
Information on Neisseria gonorrhoea 12(3)
Neisseria gonorrhoea in the Darwin water supply 12(3)
Public health legislation update 12(2)
Salmonella species in Fresh Produce – an emerging food safety issue for
the NT 14(3)
Signage of Effluent Outfall Dispersal Zones - Buffalo Creek and East Point,
Darwin 15(1)
Standard Operating Procedure - for Environmental Health Response
to Water Quality Failures 15(1)
15 food safety tips for the Christmas season (or any time of year) 18(4)
Erythema infectiosum (Fifth disease) 16(2)

Erratum: Dates, damned dates and statistics!! A final word on reporting
dates, with apologies to Katherine CDC 9(3)
Evidence for a sharp decrease in gonococcal cultures and its implications
for the surveillance of antimicrobial Sensitivity 16(3)
Fecal & Other Body Fluid Accident Policy: Action to be taken following
The Northern Territory Disease Control Bulletin Index

Contamination 1(2)

Fact sheets
- Australian Bat Lyssavirus 10(4)
- Campylobacteriosis 14(3)
- Chikungunya 11(3)
- Chlamydia trachomatis 14(3)
- Dengue 7(1), 17(3)
- Dengue mosquito control 14(4)
- Echidna 17(2)
- Disease 10(2)
- Donovanosis 11(4)
- Falls disease (erythema infectedum) 10(2)
- Food Safety — Hazards Foods — Cooling and Reheating 13(2)
- Food safety tips for Christmas 13(4), 18(4)
- Fly control: Environmental Health Fact Sheet 18(4)
- Guidance on use of rainwater tanks in the NT 19(1)
- Hand Foot and Mouth 10(2)
- Hendra virus 19(2)
- Hepatitis A. 12(4)
- How National Immunisation Program Changes will affect NT childhood Vaccination Schedule, November 1, 2005. Information for providers 12(5)
- Influenza and its prevention 20(1)
- Information for food handlers 13(3)
- Legionella 14(2)
- Leprosy 13(1)
- Malaria 11(2)
- Melioidosis 16(4) 19(1)
- Murray Valley Encephalitis 18(1)
- Non-healing ulcers including those caused by non-tuberculous mycobacteria (NTM) 14(1)
- Norovirus 13(2)
- Pertussis (Whooping cough) 15(1)
- Scabies 17(1)
- Strongyloides faecalis fact sheet 18(2)
- Two-step Mantoux testing 10(2)
- Trachoma 17(4)
- Typhoid and paratyphoid fever 19(4)
- Vaccine safety for adolescents 12(3)
- Viral bacterial disease 13(3)

Falls (see injury prevention and control)

Fetal alcohol syndrome in Australia 7(3)

An analysis of opinions published in the NT News on the use of fireworks surrounding Territory Day 17(3), 18(3)

Beyond the burns: effects of firework-related injuries 16(3)

Firework-Related Injury Community Survey Report 2009 16(3)

Letter to the Editor 11(2), 16(3), 17(3)

Flavivirus serology 5(2)

Food Bill 2003 11(1)

Food safety tips for Christmas 11(4)

Fly control: Environmental Health Fact Sheet 18(2)

GAA 15(4)

Gastroenteritis (see enteric disease)

General Practitioners
- General Practice registrars position CDC 9(2)
- Progress report on the CDC-GP liaison project ‘strengthening the links’ 12(1)

Gonococcal conjunctivitis (see sexually transmitted disease)

Gonorrhea (see sexually transmitted disease)

Evidence for a sharp decrease in gonococcal cultures and its implications for the surveillance of antimicrobial Sensitivity 16(3)

Goat Peninsula Festival. Congratulations to DHF Nhulunbuy 16(2)

Guidelines
- CDC clinical protocols for the management of sexually transmitted infections 12(2)
- Community control of scabies and skin sores 4(3)
- Congenital syphilis: Revised guidelines for the investigation and treatment in the Top End of the NT 5(4)
- Congenital syphilis: revised protocol for management and re-establishment of follow-up register in the Darwin region 12(3)

Control of acute post-streptococcal glomerulonephritis 4(2), 17(2)

Control of diphtheria in the NT. 5(2)

Control of gonococcal conjunctivitis 4(3)

Control of nontuberculous mycobacteria 18(1)

Control of trachoma in the Northern Territory 15(2)

Control of Tuberculosis in the NT 10(2)

Evidence-based Review for ARP and BMIH, an Australian first 13(3)

Fecal & Other Body Fluid Accident Protocol: Action to be taken following contamination 11(2)

Guidelines for the control of leprosy in the NT. 18(1)

Guidelines for the Control of Tuberculosis in the Northern Territory. 4th Edition, April 2008 15(1)

Guidelines for Malaria 2012 20(1)

Guidelines for the management of people with infectious diseases who put others at risk of infection 12(3)

Guidelines for screening and management of infectious diseases in refugees from Sub-Saharan Africa—based on a single initial blood sample after arrival in the NT 11(4)

Guidelines for the Design, Operation, Management and Maintenance of Aquatic Facilities 13(2)

Health Skin Program. Guidelines for the Community Control of scabies, skin sores and crusty scabies in the Northern Territory 17(2)

Hepatitis A public health management 5(2)

Hepatitis B vaccination policy in the NT. 4(4)

Hepatitis B public health management. 5(2)

Inferior NT Guidelines for the Management of Sexually Transmitted Infections in the Primary Health Care setting 13(1)

Malaria Guidelines for Health Professionals in the Northern Territory 2007 14(1)

Malaria Protocol. Guidelines For Health Professionals in the Northern Territory — 4th ed June 2004 11(2)

Management of male urethral discharge (pus from the penis) or dysuria (pain when passing urine) in the primary health care setting 12(2)

Meningococcal meningitis/septicaemia chemoprophylaxis 4(4)

NT disease control policies, protocols and guidelines list 7(3)

Revised CDC guidelines 7(1)

Revised, Screening guidelines for the initial health assessment of newly arrived refugees in the NT 19(2)

The 2008 revised antibiotic protocol for adult community-acquired pneumonia in the Top End of the Northern Territory 14(4)

Haemophilus influenzae type b

Carriage in Aboriginal infants 3(4)

Case reports 12(3), 6(2)

Epidemiology 1(9)

Evaluation of vaccine campaign 1(10), 2(4)

Haemophilus influenzae type b (Hib) carriage in Northern Territory children 18(4)

Incidence of invasive Hib disease in the NT 5(1)

Vaccination program 16(7, 9)

Hand, foot and mouth disease 16(3)

Fact sheet 10(5)

Handwashing
- No Germs on Me. Hand Washing Campaign 15(3)

Head lice 3(2) 17(3) 18(2) 19(2)

Hepatitis A

Factors affecting hepatitis A vaccination uptake among childcare workers in the NT 8(3)

Hepatitis A Alert 12(4)

Hepatitis A. Fact sheet 12(4)

Hepatitis A. Nearing elimination in the NT following immunisation of Indigenous children 17(3)

Hepatitis A outbreak in Central Australia 12(4)

Hepatitis B

Editorial 13(1)

Hepatitis B screening among women birthing in Alice Springs Hospital, and immunisation of infants at risk 14(2)

Hepatitis B in the Northern Territory-An analysis of hepatitis B notifications 19(2)

Notifications 2(4)

Provision of free paediatric hepatitis B vaccine to CPIs 4(1)

Public health management guidelines 5(2)

Retrospective audit of immunoglobulin and vaccine uptake in infants at risk of perinatal transmission of hepatitis B virus 13(1)

School Age Program, NT 6(2, 3)

School Age Program, Operations North 5(2)

Vaccination and health care providers 5(2), 7(3)
Vaccination policy in the NT 4(4)
Vaccination program at Clinic 34, Darwin 6(1)
Vaccination schedule change 1(7)

Hepatitis C
An update on Hepatitis C in the NT 12(1)
An update on the hepatitis C landscape in the NT 11(2)
Case register 2(1)
Clinical aspects 1(10)
Community awareness campaign 3(5)
Editorial: Hepatitis C 11(2)
Enhanced surveillance 7(2)
Hope for hepatitis sufferers 19(1)
Interferon 2(4)
Introducing hepatitis C enhanced surveillance in the Northern Territory 13(2)
Management 2(2)
New treatment for hepatitis C virus: the future is now 18(4)
Notification 1(5), 2(2)
NT prison population 6(1)
Perinatal transmission 1(6)
Support group 26(7)

Hepatitis E Case report 2(1)

Herbal viagra 15(4)

Histamine fish poisoning (Scombroid) incident – Darwin 7(2)

HTLV-1
Addendum to article on HTLV-I and Tuberculosis in Central Australian Aboriginal people (Bulletin 14 no 3, Sept 2007 pp 5-8) 15(1)
Current knowledge about HTLV-I in Central Australia: Proceedings from the first workshop on HTLV-I in Central Australia 19(1)
HTLV-I infection and tuberculosis (TB) in Central Australian Aboriginal people 14(2)

Human Immunodeficiency virus (HIV) (see sexual health)

Human papilloma virus (see Immunisation)

Human papilloma virus (see Sexually transmitted disease)

Immunisation (also see specific diseases)

9th Edition of The Australian Immunisation Handbook and 4th Edition of Myths and Realities have been officially launched 15(1)
About Giving Vaccines, An accredited short course for vaccine providers 11(2)
Adult (previous article) 2(5)
Adult and Special Groups Vaccination Schedule January 2012 19(1)
Adult immunisation campaign 3(1)
Adult Immunisation Schedule July 2008 15(3)
Adult immunisation - new initiatives for 1999 5(4)
An alert system is already in place! A further response to editorial on “Retrospective audit of immunoglobulin and vaccine uptake in infants at risk of perinatal transmission of hepatitis B virus” 13(2)
Attention all health care workers 7(3)
Australian Immunisation Handbook 8th edition 2003 10(3)
BCG availability – new vaccine policy in the NT 7(4)
BCG – Change to BCG vaccine in Australia 19(3)
BCG complications - Alice Springs 2(5)
BCG complications - a review 5(3)
BCG – Review of BCGs given to babies born in Adelaide to women transferred from Alice Springs Hospital 14(1)
Birthday card for 4 year olds/Immunisation Reminder 19(4)
Bus trip with a ‘snag’ 6(3)
Changes to the Australian and NT Vaccination Schedules 7(1)
Change to Northern Territory childhood vaccination schedule 1 October 2009 16(3)
Change to the Northern Territory Childhood Immunisation Schedules to introduce 13-valent pneumococcal vaccine 1 October 2011 18(3)
Changes to the NT Childhood Vaccination Schedule 5(3), 9(2), 15(3)
Childhood immunisation coverage and timeliness in the NT 16(2)
Childhood immunisation internet site 13(2)
Childhood immunisation uptake: Part 1 - Top End 4(1)
Childhood immunisation uptake: Part 2 - Central Australia 4(2)
Childhood Vaccination Schedule 2008 15(3)
Cold chain 1(1), 2(7), 8(1), 8(2)
“Commendation for excellence” - Jenner award 4(1)
Coverage rates 1994 2(5)
Coverage of children 12-14 months in real time 4(4)
Coverage in Darwin Urban area 3(1)
Coverage in NT for two birth cohorts as of 30 June 2000 7(3)
Coverage - third quarter assessment to 30 Sept 1997 5(2)
Coverage – NT in each area
Coverage - Combined analysis of two ACIR cohorts of NT children aged 12 - 15 months 9(2)
Custom designed vaccine refrigerator trial 8(1)
Declaration of status 2(8)

Don’t give MMR or Pedvax HIB booster doses too early 7(3)
Effect of conjugate Hib vaccines on the incidence of invasive Hib disease in the NT 5(1)
Evaluation of vaccine campaign 2(4)
Extension to indications for Human Papilomavirus Vaccine (Gardasil®) 17(4)
Flu shots for health staff 4(2), 5(4)
General practice 2(4)
Haemophilus influenzae type b 14(7,9,10), 26(4), 18(4)
Hepatitis A 2(1), 3(4), 3(2), 6(1), 14(2)
Hepatitis B 1(7)
Hepatitis B screening among women birthing in Alice Springs Hospital, and immunisation of infants at risk 14(2)

How National Immunisation Program Changes will affect NT childhood Vaccination Schedule 12(3)
How to apply for freeacellular pertussis vaccine 4(1)

Human papilloma virus
Cervical cancer vaccination - Human Papilloma Virus Vaccination Program launched 14(1)
Extension of HPV vaccination to boys in the Northern Territory in 2013 19(3)
Recent PBAC Recommendations regarding Human Papillomavirus vaccine 19(3)
Update on the HPV program and National HPV register 15(3)
Influenza 1(4), 2(3), 6(2), 5(1), 19(1)
Influenza vaccination (2008) 15(1)
Flu shots for health staff 4(2), 5(4)
Influenza immunisation of doctors at the Royal Darwin Hospital, 2007: immunisation rate and Factors contributing to uptake 14(4)
Influenza vaccination (2008) 15(1), 16(2)
Influenza vaccination poster—Make sure you are protected against the flu 16(2)
NT provides free seasonal influenza vaccine for all pregnant women 16(2)
Pandemic H1N1 2009 influenza vaccination uptake 16(4)
Tennant Creek influenza vaccination program 12(2)
2011 Flu vaccine—gearing up for good coverage rates 17(4)
2011 Seasonal Influenza Vaccine Program 18(1)
Influenza vaccine—not just for the elderly 20(1)
Immunisation Audit Health Clinic A 14(1)
Immune Australia 4(3)
Immunisation coverage, NT (each issue commencing 13(2)
Immunisation ’database’ 3(1)
Immunisation fulfills 6(3)
Immunisation update 6(4), 10(2), 10(3)
Immunisation News 4(2)
Immunisation newsletter: Commonwealth changes to maternity immunisation allowance and family benefit tax 18(4)
Immunisation catch-up schedule for newly arrived refugees in the NT 18(3)
Immunoglobulin 1(1)
Impact of 1996 campaign 4(1)
Investigation of Meningococcal Vaccine Failure 15(2)
Japanese Encephalitis 1(6)
Measles 1(2,4), 2(4), 5(2), 7(1), 7(3), 18(4)
Measles, mumps vaccination history in the Northern Territory 15(4)
Meningococcal C School Based Vaccination Program 2004 11(3)
Meningococcal vaccine 10(1)
Mumps, Immunisation coverage 14(3)
Mumps in the NT 15(4)
New Commonwealth funding for hepatitis A vaccine for Indigenous children 12(2)
New Commonwealth funding for varicella vaccine and inactivated polio vaccine 12(1)
New conjugate meningococcal C vaccine 9(1), 10(1)
NT Adult and Special Groups Vaccination Schedule 7(1)
NT Immunisation Register: towards a whole of life vaccine record 18(2)
NT provides free seasonal influenza vaccine for all pregnant women 16(2)
NT Standard Childhood Vaccination Schedule, 1/5/2000 7(1)
Northern Territory Human Papillomavirus Vaccination Program update 15(1)
November 2005 Immunisation schedule changes – What’s happening 12(4)
Ongoing NT funding for DTPa 4(4)
Paracetamol can it decrease the effect of vaccines? 16(4)
Pertussis 17(1), 2(4), 4(2), 8(4), 15(4)
Pneumococcal 22(8)
Conjugate pneumococcal vaccine 8(2)
Conjugate pneumococcal vaccine coverage 8(4), 10(2)
Feasibility study for the NT Pneumococcal Vaccine Trial 7(1)
Pneumococcal 23V Revaccination Guidelines 2012 19(1)
Review of adult pneumococcal vaccine database 9(3)
Universal pneumococcal vaccination program for 2005 11(4)
What’s new for prevention of invasive pneumococcal disease? 8(1)
Polio 2(0), 9(3)
Pre-vaccination survey of RDEH health care workers on attitudes and barriers to the new pneumococcal vaccine 2(0)
Promotion activities in Alice Springs 4(1)
Provision of free paediatric hepatitis B vaccine to GPs 6(1)
Rabies immunoglobulin 15(4)
Rotavirus
Introducing Rotavirus Vaccine in the Northern Territory (NT) 14(1)
Rotavirus immunisation audit in a remote community 14(1)
An estimate of rotavirus vaccine efficacy following an outbreak of rotavirus gastroenteritis in Central Australia 15(1)
Rotavirus Vaccine introduced in the NT 13(3)
School Age Program, NT 6(2,3)
School Age Program, Operations North 5(2)
School entry records 2(4)
Small polio surveillance project – 'About Giving Vaccines' 6(1)
Status of children 0-6 years in Alice Springs 5(2)
Tetanus 16(2, 63)
Vaccination and health care providers 5(2)
Vaccination coverage in each issue commencing 13(2)
Vaccination issues 6(1)
Vaccination policy in the NT 4(4)
Vaccination program at Clinic 34, Darwin 6(1)
Vaccination schedule change 17(1)
Vaccination Schedule, November 1, 2005 12(3)
Vaccine safety for adolescent girls 12(3)
Varicella vaccination 9(3)
Varicella vaccine workshop, Melbourne, Dec 1999 6(4)
Voluntary documentation 3(1)
Immunosuppression
Prevention of opportunistic infections in immunosuppressed patients in the tropical Top End of the Northern Territory 11(1)
Indigenous Community Housing Survey (NT) 11(4)
Indigenous health indicators
Closing the gap – targets for indicator diseases 15(4)
Closing the gap – the challenge 15(4)
Infection control and waste management at the Zaidoo Abidin Hospital, Banda Aceh, April 2005 12(2)
Informatics – it should be contagious 16(1)
Influenza
A summary of influenza 2009 in the Northern Territory 17(1)
Austrian management plan for pandemic influenza 12(2)
CDNA position statement on the use of anti-viral medication for influenza (Pandemic H1N1) 2009/16(2)
Flu shots for health staff 4(2), 5(4)
Hong Kong 'bird flu' 6(1)
Influenza immunisation of doctors at the Royal Darwin Hospital, 2007: immunisation rate and factors contributing to uptake 14(4)
Influenza report 11(3)
Influenza season 2007/08: bad, but not that bad 14(4)
Influenza Surveillance: 16(2)
Influenza vaccination 2008 (15(1)
Influenza vaccine 2012 19(1)
Influenza vaccine in pregnant women and children under 5 years of age 17(3)
Meningitis: The mother and the infant 19(1)
More on Flu: News on the seasonal influenza vaccine 2010 17(1)
NT provides seasonal influenza vaccine for all pregnant women 16(2)
Options for Control of Influenza III: Claims 4-9 May 1996 (Conference report) 3(2)
Outbreaks 2(5,6), 3(4,7)
Royal College Australian and New Zealand College of Obstetricians
Statement Endorses Influenza Vaccine 19(1)
Summary of influenza 2009 in the Northern Territory 17(1)
Tennant Creek influenza vaccination program 12(2)
The early experience of pandemic (H1N1) 2009 influenza in the Northern Territory, Australia 16(2)
The epidemiology of laboratory confirmed influenza in the NT 2001-2007 15(2)
The epidemiology of the pandemic (H1N1) 2009 influenza in the Northern Territory, June-September 2009 16(3)
Injecting equipment
Disposal of used injecting equipment in the Northern Territory 14(3)
Injury Prevention and control
An analysis of public hospital admissions for water related injuries in the Northern Territory, Australia 2002-2006 14(2)
An analysis of impact of falls & falls prevention activities in the NT 15(1)
Falls hospitalisation in the NT 1999-2008: the basis of need for a comprehensive falls prevention strategy 17(4)
Firework-related injuries (see Firework-related injuries)
Injury Prevention: A National Plan for Consultation and Moving Forward in the NT 11(3)
Injury Prevention and control; Brisbane, May 1999 (Conference report) 6(2)
Injury prevention and safety promotion in the NT: Safe Communities 11(4)
Palmerston Safety Survey 2006: home safety, perceptions of community safety and experiences of injury 14(4)
Too many road crashes involving young drivers. Time for changes to our licensing systems and driver education strategies. 12(2)
Water related injury hospitalisations in the Northern Territory 1999-2008 17(2)
Interferon
Hepatitis C 2(4)
Dental protocols [editorial] 4(1)
Pilot screening program 4(1)
Intussusception
Acute intussusception in infants and children in the Northern Territory. Report for the study period 1 June 2006 - 31 May 2008 15(2)
Intussusception in the Northern Territory. Report from a 3-year prospective surveillance system 13(4)
Iron deficiency in Aboriginal children in the NT 8(3)
Jellyfish (see box jellyfish)
Kava drinking 3(4)
Kava liver toxicity and kava ‘blits’ 9(4)
Kizhage NT 19(4)
Laboratory
Reopening a hospital in Banda Aceh 12(3)
Latent Tuberculosis Infection (LTH)
Preventive treatment and follow-up of contacts 2(5)
Two-step Mantoux testing 10(2)
Legionella Fact sheet 14(2)
Leguminous an overview in the context of an emerging pathogen in Top End wildlife 10(4)
Leprosy
Case reports 13(1), 3(1), 3(2)
ELISA test 3(1)
Elimination 6(2)
Indonesia 2(1)
Leprosy Fact sheet 15(1)
Leprosy in the Northern Territory (NT): A descriptive epidemiological study of all notified cases from 1991 to 2004 12(2)
Leprosy: Still Present in the NT 13(1)
NT assists with leprosy survey in Timor 16(1)
Risk of relapse of multicentric leprosy after multidrug therapy 8(2)
Update on control in the NT 6(2)
World leprosy Day 2010 16(4)
Updated guidelines for the control of leprosy in the NT 18(1)
Leptospirosis
A case of Leptospirosis caused by Leptospira tarassovi acquired in the Northern Territory 11(2)
Editorial: Leptospirosis in the Northern Territory: Keep your hands clean! 11(3)
Leptospirosis: an occupational hazard for crocodile egg collectors 18(1)
Leptospirosis in the Top End: an investigation into the occupational risk to crocodile handlers 11(3)
Leptospirosis Update 8(3)
Leptospirosis in dogs 8(1)
Two cases of Leptospirosis diagnosed in Royal Darwin Hospital 7(4)
Letter to the Editor
Biopsy (from the) 14(2)
Entic diseases in the NT Jan–Mar 2004 11(3)
Lysavirus
Australian Bat Lysavirus – Fact sheet 10(4)
Australian Bat Lysavirus in the NT 2000 – 2002 and overview of exposure and treatment 10(4)
But cat from East Ambum 3(4)
Flying fox alert 7(2)
NT retrospective search for lyssavirus in humans 4(2)
Post exposure prophylaxis flowchart 6(3)
Prevention strategy update 4(4), 6(2), 7(2)
Update 4(4)

Malaria
An audit of malaria management in the Top End 10(3)
A Case of Plasmodium Ovale 12(4)
Case reports 1(4), 6(3)
Epidemiological data 5(3)
Imported malaria cases at the Northern Immigration Detention Facility, Berrimah, NT - Risk assessment and recommendations 13(4)
Imported malaria case investigation and precautionary vector control. Leanyer, Darwin March/April 2011 18(3)
Malaria Guidelines for Health Professionals in the NT 2007 14(1)
Malaria Protocol. Guidelines for Health Professionals in the Northern Territory - 4th eds June 2004 11(2)
Malaria Fact sheet 11(2)
NT Notifications in each issue
Public health response to an imported case 6(3)
Receptive area in NT 20(8)
Revision and review of NT protocol 6(3), 7(3)
Student (oversea) screening protocol 2(1), 21(3)
Surveillance 10(8), 21(3)
Thinking of walking the Kokoda Trail? Take note! Malaria in Kokoda Trail walkers 14(1)
Travelling 2(8)

Vivax malaria: prevention and treatment not always straightforward 14(1)

Mammography screening 6(4)
Meades
Association with Crohn’s disease and autism 5(1)
Case reports 14(5), 5(8), 18(4)
Control measures for contacts 2(7)
Differential diagnosis 1(2)
Enhanced meades control campaign 5(2), 7(1)
Management in Central Australia 3(3)
Meades awareness 13(1), 18(4)
Meades, mumps vaccination history in the Northern Territory 15(4)
Northern Territory meades cases in September and October 2012: Public health management in action 19(4)
Notifications 1991 - 1999: implications for policy development 7(3)
Outbreaks 12(4), 21(3), 3(5); [brief report] 6(2), 18(4)
Outbreak amongst East Timorese evacuees in Darwin, 1999 7(2), 7(4)
Points of correction/clariﬁcation/further information regarding the meades articles in the previous issue of the Bulletin 7(4)
Protocol for hospitals 2(2)
Working together to beat meades 7(3)

Medical Entomology
A Territory Health Service survey of Dili, East Timor and public health implications 8(3)
A year of mosquito monitoring at Robertson Barracks and the nearby Mili Hill Swamp, NT 18(2)
Aedes aegypti mosquitoes, vectors for dengue, found in Tennant Creek, Elimination Campaign in Progress 11(1)
Aerial mosquito control of Ilparpa swamp 17(2)
An imported case of Chikungunya in the NT and a summary of the ecology of the disease 11(3)
Another exotic mosquito interception at Frances Bay port, Darwin, January 2011 18(2)
Bites and stings in the Top End and how to avoid them 12(3)
Biting Midges or ‘Sandflies’ in the Northern Territory 10(3)
Community can help eliminate dengue mosquitoes in Tennant Creek 18(4)
Dengue mosquito eradication project Tennant Creek: End of January 2005 progress report 12(1)
Dengue mosquito incursion and the eradication program on Groote Eylandt NT 14(3)
Dengue mosquito incursion into Tennant Creek 2011 19(1)
Dengue mosquitoes on Groote Eylandt 13(4)
Dengue mosquito eradicated on Groote Eylandt 15(2)
Detection and elimination of Aedes albopictus on cable drums at Perkins Shpping, Darwin, NT; April 3 2007 14(3)
East Timor AusAID Mosquito Project 13(3)
Exotic mosquito incursions and the risk of vector-borne disease in Block 4, Royal Darwin Hospital campus, Darwin, Australia, 2005-07 14(4)
Exotic mosquitoes detected in cargo at East Arm Port area 16(2)
Exotic mosquitoes detected in tyres at east Arm Wharf, Darwin, NT, 1st December 2003 11(1)
Federal Government moves to reduce dengue fever threat 11(2)
First record of the mosquito species Aedes (Aedopterus) notatus (Theobald) (Diptera: Culicidae) in Australia 11(2)
Guidelines to prevent fly breeding in domestic situations in the Top End 8(1)
Groote Eylandt remains dengue vector free 16(1)
Imported malaria cases at the Northern Immigration Detention Facility, Berrimah, Northern Territory: Risk assessment and recommendations 13(4)
Initial survey of underground mosquito breeding sites in Darwin NT 10(3)
Interceptions of Aedes aegypti and Aedes albopictus in the port of Darwin, NT, Australia, 25 January and 5 February 2010 17(4)
Interim report to the National Arbovirus and Malaria Advisory Committee on the detection of exotic mosquitoes in tyres at Perkins Shipping, Darwin, Northern Territory on 12 May 2006 13(2)
Letter to the editor NT News 16(1)
Lot 5646 Town of Darwin Mosquito breeding in the upper tidal reaches of Lulu Creek 16(2)
Medically important insects in the NT and how disasters affect them 10(1)
Mosquito-borne disease warning for the Top End of NT, 28 March 08 15(1)
Mosquito borne diseases in the NT: a historical overview 18(2)
Mosquito borne virus warning 5(2)
Mosquito control and the Katherine Flood April 2006 13(2)
Mosquito control at Hillaby’s Lake, Katherine, NT 9(3)
Mosquito control in Ilparpa Swamp – A big step forward 9(1)
Mosquito control in Leanyer Swamp 14(2)
Malaria investigations 1(4)
Mosquito vector control in the Northern Territory 14(2)
My mosquito run 18(2)
Northern Territory is dengue virus and dengue fever free. Has been since the 1950s 12(2)
NT Medical Entomologist Ipswich flood relief trip 18(1)
NT Mosquito borne disease alert for March to June 2011 18(1)
Personal mosquito protection while overseas 15(1)
Personal protection from mosquitoes & biting midges in the NT 11(2)
Recommended interim water receptacle treatment for exotic mosquitoes on international fishing vessels arriving in Australia 13(2)
Recommended water receptacle treatment for exotic mosquitoes on foreign fishing vessels arriving in Australia 13(2)
Rectification and control practices in a major salt marsh mosquito breeding site, Darwin, NT 9(4)
Red imported fire ant 8(1)
Red imported fire ant still threatens the NT 10(1)
Role of 1(8)
Ross River virus and Bamah Forest virus disease cases in NT in 2006/2007 14(2)
Salt marsh mosquito larval control in the Lennar coastal wetland, Northern Territory 17(1)
Screw worm 8(1)
Sentinel Chicken Program results in the Top End of the NT 14(2)
Severe skin reactions from the sap of NT tree Dacryodes martiana Blume 14(1)
Timor-Leste AusAID Mosquito Project – an update 14(3)
Update on the Aedes aegypti mosquito eradication campaign in Tennant Creek, NT 11(2)
What is driving salt-marsh mosquito peaks in Darwin: tides or rainfall? 18(3)

Medical Voigmu in 6 lessons 9(4)

Meloidosis 1(7); 5(4)
A dry wet season results in fewer Top End cases 9(1)
Case reports 13(3), 8(1)
El Nino effect 4(3)
Fact sheet 19(1)
Kava drinking 3(4)
Meloidosis campaign event 19(4)
Meloidosis in the Top End 12(4)
Meloidosis in the NT 2009 16(4)
Summary 1999-01 wet season 1(1)
Summary 1993-94 wet season 2(1)
Summary 1994-95 wet season 2(6)
Summary 1997-98 wet season 5(1)
Treatment and control 1(10), 2(8), 9(4)
Meningococcal disease
A case of meningococcal eye disease 5(1)
An acute meningococcal and septicaemic group A meningococcal disease in an overseas adult 5(1)
Central Australia 1998 6(2)
Investigation of Meningococcal Vaccine Failure 15(2)
Meningococcal contact tracing 13(4)
Meningococcal disease in the NT between 1991 and 2000 8(4)
Meningococcal disease –2 cases in August 1997 4(3)
New conjugate meningococcal C vaccine 9(1)
 Surveillance in the NT 5(1)

Meningitis
Coxsackievirus B 2(1)
Escherichia coli 30 2(1)
Guidelines for meningococcal meningitis/septicaemia chemoprophylaxis 4(4)
Meningococcal 1(4), 5(6); 2(7); 4(3); 5(1) 11(3)
Viral 1(6), 14(4)

Men’s Health
Program at Gapuwiyiy 6(3)
Report on Men’s Health Week at Community X, Dec 1998 6(1)
Report on Men’s Health Screening at Community W, May 1999 6(3)
Report on Men’s Health Week at Community Z, June 1999 6(3)
Well men’s check 8(4)

Mosquitoes (see Medical Entomology)
MRSA
MRSA trends 28(3)
The emerging problem of community-associated MRSA: Nectrotising pneumonia in a 19 month old Aboriginal boy 15(2)
Mumps in the NT 15(4)
Measles, mumps, rubella vaccination in the Northern Territory 15(4)

Nalagertorwudjow ongkatjulu
Nalagertorwudjow in the Darwin water supply 12(3)
Information on Nalagertorwudjow 12(3)

Narcotic use and abuse in the NT [Conference report] 28(3)

National Immunisation Awards 9(4)

Needle and syringe programs in the NT – snapshots 7(2)
A return on investment 17(3)

Neonatal group B streptococcal disease 2(4)

Neurological disease in a cat 3(2)

Non-communicable diseases
Clinical management and continuity of care COAD project 4(4)
Update, Diabetes: New diagnostic criteria and NT AusDiaB results 8(1)
Update No. 1 Control and Complications Trial 3(2)
Update No. 2 Cardiovascular disease and treating lipids 4(1)
Update No. 3 Cardiovascular risk and cholesterol reduction 4(3)
Update No. 4 Hypertension control 5(1)
Update No. 5 Aspirin and cardiovascular disease 5(2)
Update No. 6 Prescribe moderate physical activity 6(2)

Nontuberculous Mycobacteria
Non-healing ulcers: Including those caused by nontuberculous mycobacteria (NTM) 14(1)
nontuberculous mycobacteria (NTM) (10(1)

Norovirus
A foodborne disease outbreak associated with a ‘high tea’ platter, caused by norovirus 19(3)
An outbreak of Norovirus associated with cooked oysters in Darwin 11(1)
Norovirus detected in oyster meat 11(2)

Outbreak of norovirus gastroenteritis at Robertson Barracks 13(2)

Notifiable Diseases
Amendments to schedule 1(4)
Announcing 2 new notifiable diseases— invasive group A streptococcal infection and disseminated strongyloidiasis 18(2)
Changes to the NT Notifiable Diseases Act 1999 6(1)
Changes to the schedules of the Notifiable Diseases Act 13(1)
Changes to the Notifiable Diseases Schedule 17(4)
Comments on Notifications (each issue)
Convening of the Northern Territory Notifiable Diseases Committee 15(3)
Diseases newly added to NT list 6(4)
Errors: Dates, summed data and statistics! A final word on reporting dates, with apologies to Katherine CDC 9(3)
Establishment of the Notifiable Diseases Committee 17(3)
Guidelines for the management of people with infectious diseases who put others at risk of infection 12(3)
Graphs of selected notifiable diseases (each issue)

IT innovation in CDC—Development and implementation of the NT Notifiable Diseases System 11(4)
Notification Form 7(1)
Notified cases of vaccine preventable diseases in the NT (each issue)
NT Malaria notifications (each issue)
NT notifiable diseases 2002 – A summary 10(1)
NT Notifications of diseases by onset date & districts (each issue)
Strongyloides faeces sheet 18(2)
Summary of selected notifiable diseases 2003-04 wet season 11(2)

Nutrition and infection in Aboriginal children 4(2)

Obituary
Eileen Jones AM 11(3)
Eulogy to Dr Jan Bulley 13(4)
Eulogy to Ellen Kettle (1922-1999) 6(3)
Merv Fairley - 7 March 1949 – 13 October 2011 19(3)

Otitis media
A single dose treatment for suppurating ear disease in Aboriginal children 9(4)

Chronic suppurative otitis media (CSOM). Ear toilet has not gone far enough 10(4)
Community initiatives to reduce rates of CSOM 9(4)

Outbreak 1(7): 3(4) [brief report] 5(4); 6(2); 9(3)
A foodborne disease outbreak associated with a ‘high tea’ platter, caused by norovirus 19(3)
An investigation into an outbreak of Salmonella Typhimurium phage Type 9 associated with a Darwin restaurant 17(3)
An investigation of a cluster of Salmonella Oso cases 14(3)
An outbreak of Norovirus associated with cooked oysters in Darwin 11(1)
Burge Bay. A gastroenteritis outbreak on a burge at sea 11(3)
Gastroenteritis in Aged Care Facilities 14(3)
Gastroenteritis outbreak: due to Staphylococcus aureus 10(3)
Outbreak of gastroenteritis in a remote mine site 12(1)

Oysters 6(4)

Salmonella Ball outbreak in the NT, May-June 2002 9(3)

Shigellosis: A foodborne outbreak in a tourist group in Central Australia 6(3)

Vaccination policy 6(4)
Vaccination program 20(1), 3(4), 3(2), 6(1)
Viral meningitis outbreak 14(4)

Reminiscences 4(1)

OzFoodNet
A review of enteric disease in 2009 from the OzFoodNet perspective 17(3)
An review of enteric diseases in 2010 from the OzFoodNet perspective 18(3)
A look at enteric disease in the NT during 2011 from the OzFoodNet perspective 19(3)
Northern Territory OzFoodNet Highlights for 2005 13(2)
Northern Territory OzFoodNet Highlights for 2003 13(1)
The Northern Territory OzFoodNet Site – A Summary of 2008 16(1)
Northern Territory OzFoodNet Site – A Summary of 2008 16(1)

Palmerton street food program: first report for excellence in 15(4)

Pneumonia
Australian management plan for pandemic influenza 12(2)
CDNA position statement on the use of antiviral medication for influenza (Pandemic H1N1) 2009* 16(2)
Pandemic Influenza Planning 13(2), 13(3)
Pandemic (H1N1) 2009 influenza vaccination uptake 16(4)
Survey RHH HCW attitudes to pandemic (H1N1) 2009 vaccination 16(4)
The early experience of pandemic (H1N1) 2009 influenza in the Northern Territory, Australia 16(2)
The epidemiology of the pandemic (H1N1) 2009 influenza in the Northern Territory, June-September 2009 16(3)

PAP smear Register 3(1), 7(4)

Parechovirus can it decrease the effect of vaccines? 16(4)
Paratuberculosis 3(0)

Pediococcus Hansenii Capitis 3(2)
Pediculosis capitis 3(2)
Pelvic inflammatory disease (PID) 7(3)
Cessation of trial 6(4)

Pentocillin resistant Krebsia pneumonia (see sexually transmitted diseases)
Pericarditis
TB 3(3)
Pertussis (17,8)
Case report 1(9)
Information about pertussis for OPs: 15(2), 16(1), 18(3)
Outbreak: 2(4), 8(4)
Pertussis outbreak in Central Australia 2010 18(3)
Pertussis program for new parents 15(4)
Pertussis — what can CDC offer? 12(1)
Pertussis (Whooping cough) — Fact sheet 15(1), 18(3)
The Epidemiology of Pertussis: A study in the Northern Territory in 2006 13(4)
Vaccination coverage in the NT 8(4)

Pneumococcal disease (also see Immunisations)
Awareness campaign 2(8)
Conjugate pneumococcal vaccine 8(2)
Conjugate pneumococcal vaccine coverage 8(4)
Femoral study for the NT Pneumococcal Vaccine Trial 7(1)
Pneumococcal disease 2(5)
Review of adult pneumococcal vaccine database 9(4)
Universal pneumococcal vaccination program for 2005 11(4)
Vaccine 2(2)

What’s new for prevention of invasive pneumococcal disease? 8(1)

Pneumonia (community-acquired)
Treatment 1(9), 5(4), 7(4), 14(4)

Policies, protocols and guidelines (CDC) 10(2) (see Guidelines)

Population Health Initiatives
General Practice register position CDC: 9(2)
Population health education for clinicians — project update 9(2)
The Population Health Education for Clinicians Project 8(2)

Post-splenectomy Infection. Editorial comment 9(2)

Prisons
Incarceration conference, PHA, April 2003 10(2)
TB Control in the Darwin Correctional Centre and the crew of boats carrying asylum seekers 10(3)

Protocols (see Guidelines)

Pitxatosis 3(6)

Public health
Public health legislation update 12(2)
Public Health Response: The Big Wet, Kimberlly Region, Kimberlly
Outbreaks (Patagowa & Mudginbere), Corroboree, Marrakai and
Adelaide River Township Floods March 2007. 14(1)
The Australian Medical Response in Kota Addz Pakistan following the
flood crisis of 2010. 17(4)

Q fever — first notified case of Q fever in the NT 9(1)

Rabies
Rabies, Canine, Human-Indonesia: Bali, Alert 16(4)
Rabies detected in Bali dogs 15(4)
Rabies exposure encounters and prophylaxis in those using health services
in the NT 2007-2011 20(1)
Reduction in the number of doses of vaccine for rabies post-exposure
prophylaxis 17(4)

Refugees
Guidelines for screening and management of infectious diseases in refugees from
Sub-Saharan Africa — based on a single initial blood sample after
arrival in the NT 11(4)
Refugee health in Australia — responding to the emerging needs 13(1)

Respiratory Illness in 2 Darwin schools 4(3)

Reopening a hospital in Bandi Aceh 12(3)

Rheumatic fever/Rheumatic heart disease
Evaluation of a rheumatic heart disease video as an educational tool in
Aboriginal communities of Northern and Central Australia 12(1)
Evidence-based Review for AFR and BIRD, an Australian first 13(3)
Healthy school aged kids: Rheumatic heart disease (RHD) screening 17(4)
Letter to the Editor 15(1)
Menzies School of Health Research — projects 3(2)
New directions for the Rheumatic Heart Disease Program 12(5)
Program 4(4); 8(2); 10(1); 10(2)
Red flag tool for recognition of acute rheumatic fever 18(2)
Rheumatic fever and streptococcal pyoderma 10(2)
Rheumatic Fever: Licks the joints, bites the heart (and nibbles the brain...)
14(4)
Rheumatic Fever Video (DVD) launch at Oonpelli 12(4)
Rheumatic heart disease 2(5)
Rheumatic Heart Disease Control Program: — Overview for 2011 19(3)
Should Acute Rheumatic Fever and Rheumatic Heart Disease be nationally
notifiable? 11(3)

Standards of care in Aboriginal communities 2(5)
The Acute Rheumatic Fever/Rheumatic Heart Disease Program — an update
14(2)
The NT Rheumatic Heart Disease Control Program: an update 18(1)
The Top End rheumatic heart disease control program I. Report on program
objectives 8(2)
The Top End rheumatic heart disease control program II. Rates of rheumatic
heart disease and acute rheumatic fever 8(2)

Road safety
Analysis of injury patterns following road traffic collisions in the
Northern Territory 17(1)
Editorial 17(1)
New NT child car restraint laws 19(4)
The time for safer roads in the NT has come: summary and outcomes of
the NT Road Safety Task Force process 13(4)

Ross River Virus 1(12,4,7,8); 2(1); 4(1) 14(2)

Case reports 26(3)

Royal Darwin Hospital
A snapshot of the Royal Darwin Hospital campus workforce 19(4)

Rotavirus 2(2), 9(3), 13(3), 15(1), 17(2)
Rubella 16(5)

Encephalitis 2(1)

Safety
Palmerston safety communities program finalist in awards for excellence 15(4)
Palmerston Safety Surveillance 2006: home safety, perceptions of community
safety and experiences of injury 14(4)

Salmonella
An investigation into an outbreak of Salmonella Typhimurium phase Type
5 associated with a Darwin restaurant 15(3)
An investigation of a cluster of Salmonella Ohio cases 14(3)
Considerations around an increase of Salmonella Mbande notifications in the
Top End 9(2)
Gastroenteritis outbreak due to Salmonella 10(4)
Outbreak linked to a marine turtle 5(4)
Outbreak of gastroenteritis due to S Typhimurium 10(2)
Salmonella blood outbreak in the NT, May-June 2002 9(3)
Salmonella hirsonis [brief report] 5(4)
Salmonella Paratyphi B var Java in a child and their pet turtle 14(3)
Salmonella species in fresh produce — an emerging food safety issue for the
NT 14(3)
The 1996 national outbreak of Salmonella mbandeke 4(2)
What is environmental Salmonella? 12(4)

Scabies
New NT child car restraint laws 19(4)
Severe Acute Respiratory Syndrome SARS 10(1); 10(2); 10(3); 11(2)

Scabies 1(1)
Community control of scabies and skin sores 4(3)
Endemic scabies in dogs and people are different 5(3)
Healthy Skin Program. Guidelines for the community control of scabies,
Skin sores and crusted scabies in the Northern Territory 17(2)
Management of patients in hospital with crusted scabies 4(2)
Treatment 2(3)

Screen worm fry
[ED letter] 3(4)
Ready for the ‘killer maggot’ 8(1)

Scrub typhus 13(3); 3(3)

Sentinel Chicken Program results in the Top End of the NT 14(2)

Sexually transmitted disease 16(1), 5(4)

A background report on the cessation of the 2010 Central Australian
sexual health screen 17(2)
Azithromycin trial 2(2)
Bacterial vaginosis in women having a suction termination of pregnancy in
Darwin 9(3)
Central Australian STI risk factor study 15(2)

Chlamydia
Chlamydia Rates Are Rising Sharply in the NT 13(2)
An investigation into the amount of Chlamydia testing performed by
various health care providers in the NT 18(1)
Congenital syphilis: Revised guidelines for the investigation and treatment
in the Top End of the NT 5(4)
Congenital syphilis: revised protocol for management and re-establishment
of follow-up registry in the Darwin region 12(3)
Contact tracing 2(2)
Donovanosis eradication (National Elimination Project) 2001-2004 11(4)
Donovanosis (Fact sheet) 11(4)
Editorial 11(1)
Federal Budget initiatives 1998/99 5(2)
Genital warts 19(10)
Genital herpes 19(10)
Genital herpes 19(10)
The Northern Territory Disease Control Bulletin Index

- Gonorrhea testing and antimicrobial resistance in the NT 7(1)
- Guidelines for the control of gonococcal conjunctivitis 4(3)
- Highlights of the 1995 NT AIDS/STD Program Report 3(4)

Human Immunodeficiency Virus (HIV)
- Aboriginal population 1(9)
- Acquired Immunodeficiency Syndrome (AIDS) reporting 8(4)
- Antenatal screening 1(8); 2(7)
- HIV/AIDS guide for Kimberley health professionals [letter] 5(2)
- HIV and AIDS in the NT 1995-2000 9(4)
- HIV and travel campaign 17(2)
- HIV newly diagnosed infection in the NT 2003-2009 17(3)
- Indicators for testing 3(1)
- Non-occupational sexual prophylaxis-nPEP 10(2)
- NT HIV/AIDS report 7(4)
- Reporting 8(4)
- Routine HIV screening: is it feasible for Australia? 14(1)

Human Papilloma Virus (HPV)
- Using Human Papillomavirus testing to monitor effectiveness of treatment of high grade intra-epithelial abnormalities of the cervix 12(3)
- Update on the HPV program and National HPV register 15(3)
- interim NT Guidelines for the Management of Sexually Transmitted Infections in the Primary Health Care setting 13(1)
- Knowledge and practices by OPs in the Top End 8(3)
- Management of male urethral discharge (pass from the penis) or dysuria (pain when passing urine) in the primary health care setting 13(2)
- Need: Analysis - Youth Access to Sexual and Reproductive health services. A Snapshot 14(4)

NT antibiotic resistance N. gonorrhoeaesentinel surveillance sites 8(4)

Pelvic inflammatory disease in the Top End 7(3)

Pelvic inflammatory disease (PID): Cessation of trial 6(4)

Penicillin resistant *gonorrhoea* in the Darwin region 2003-2004 12(4)

Penicillin resistant *Netztsara gonorrhoeae*. Alert from far north Queensland 7(1)

Penicillin resistant *Netztsara gonorrhoeae* in the Darwin region 11(2)

Periodic presumptive (mass) treatment for sexually transmitted infections: Does it work? Does it do harm? Could there be a role for it in the Northern Territory? 19(2)

Protocol for STD testing 4(1)

Protocol for treatment of uncomplicated genital chlamydia infection 2(2)

Put it on so we can get it on. A sexual health campaign targeting young people aged 15-19 in Darwin 11(2)

Report on STIs in the NT: A refresher course 9(1)

Screening 1(6); 9(1)

Sex in the city. Young Women’s HIV Awareness Campaign 9(4)

Sexually Transmitted Infections in Those Under 16 Years of Age in the Northern Territory 12(4)

(SHAG) The Northern Territory Sexual Health Advisory Group

- The Northern Territory Sexual Health Advisory Group (SHAG) – 6 years on 19(4)
- The NT Sexual Health Advisory Group 14(2)
- The Northern Territory Health Advisory Group – Two years on 16(1)
- Standard treatment protocol for STDs 4(1)
- STIs in the NT: A refresher course 8(4)
- STI screening conducted in the NT DHCS and community controlled health services in Central Australia in 2004 11(4)

Syphilis

- Increasing notifications of infectious syphilis among men who have sex with men in Darwin urban area – An alarming recent trend and alert to OPs 14(4)
- Syphilis re-treatment – are we overdoing it? 8(1)
- Elimination of infectious syphilis in the NT: are we ready yet? 18(3)
- Tumpon study 2(8); 3(5)
- The meaning of STI/BIV prevention through Web 2.0 applications 17(1)

The review of Sexually Transmitted Infections (STI) and Blood Borne Virus (BBV) prevention and management in the NT 12(1)

Towards a sexual health strategy for remote communities in the NT 7(3)

Trends in notification of sexually transmitted infections from Alice Springs Hospital Laboratory 13(1)

Trachoma 26(6): 9(4)

Update on recommendations for treatment of *Netztsara gonorrhoeae* infection in the Darwin region 11(3)

Understanding antimicrobial susceptibility 8(4)

Urinary screening 3(3)

Ven Troppo – The inaugural sexual health college conference – June 2000 7(4)

Shigellosis

- Outbreak in a tour group in Central Australia 6(3)

Smoking

- Community education 3(4)

Splenectomy

- Compliance with post-splenectomy guidelines - An audit 12(4)

STEIC

- An outbreak of Shiga toxin-producing *E. coli* (STEIC) gastroenteritis associated with eating kangaroo - a case study from the Northern Territory 20(1)

Staphylococcal disease

- A cluster of invasive *S. aureus* disease in the Top End 4(2)

Gastroenteritis outbreak due to *Staphylococcus aureus* 19(5)

Streptococcal disease

- Acute post-streptococcal glomerulonephritis 2(3); 4(2); 8(2); 11(3) 15(3)
- Neonatal group A 2(4)

Outbreaks 2(5); 8(2); 19(1) 19(2)

Surveillance

- Changes to NT Communicable Disease Surveillance System 2(1,4)
- NT Hepatitis C enhanced surveillance 7(2)
- Summary of selected notifiable diseases 2003-04 wet season 11(4)
- Surveillance of meningococcal disease in the NT 5(1)

Syndromic surveillance of Emergency Department admissions in the Northern Territory 13(3)

Tumpon Study 2(8); 3(5); 5(2)

Territory Day (see firework related injuries)

Tetanus Vaccination 6(3)

Tobacco Control 18(2)

The Aebc response - a personal account 12(2)

Too many road crashes involving young drivers. Time for changes to our licensing systems and driver education strategies 12(2)

- ‘Total Recall!’ Implementing at Jadaru Health Centre 7(1)

Trachoma

- Acute post-streptococcal glomerulonephritis and opportunistic trachoma screening in an indigenous community in the Northern Territory, 2011 18(4)
- Adverse outcomes following the use of azithromycin for trachoma treatment in babies 19(5)
- A medical student’s perspective on trachoma 19(3)
- Azithromycin therapy 2(7); 14(4)
- Busting the myths about trachoma 18(3)
- Control and treatment of active trachoma in the NT 4(1)

Editorial: NT Trachoma project update 18(3)

Guidelines for management of trachoma in the Northern Territory 15(2)

Towards GET 2020: Trachoma in the NT 2010 18(3)

Trachoma Mass Drug Administration in Maningrida 19(3)

Trachoma: new advances in treatment 14(4)

Trachoma: New problem or old dilemma? 9(2)

Treatment of trachoma in small babies 14(4)

Treatment program in the Katherine region 3(4)

Trachoma - Report from the Working Group 9(3)

Trachoma update and an invitation to become a Trachoma Volunteer 14(2)

Training

- General Practice registrars in CDC, Darwin 8(1)

Tuberculosis

- Addendum to article on HTLV 1 and Tuberculosis in Central Australian Aboriginal people (Bulletin 14 no 3, Sept 2007 pp 5-8) 15(1)
- BCG complications - Alice Springs 2(6)
- BCG complications - a review 5(3)
Tuberculosis transmission within a single household - a report of a cluster of 11 cases 16(3)
Update on Top End community fighting TB 9(2)
World TB Day 2013 19(4)

Tsunami
Infection control and waste management at the Zainol Abidin Hospital,
Bandar Aceh, April 2005 12(2)
The Aceh response - a personal account 12(2)

Typhoid
Typhoid 3(3)
Typhoid notifications and the public health response in the Northern
Territory: a case series 19(4)
Typhoid and paratyphoid fever - fact sheet 19(4)

Unauthorised fishermen
Assessing the Health of Unauthorised Fishermen Approached off the
Northern Territory Coast - Developing Procedures and Protocols 13(1)

Imported malaria cases at the Northern Immigration Detention Facility,
Berrimah, Northern Territory - Risk assessment and recommendations
13(4)

Vibrio cholerae disease fact sheet 13(3)

Vibrio - Infectious Disease Fact Sheet 13(3)
Vibrio cholerae disease fact sheet 13(3)
Vibrio cholerae disease fact sheet 13(3)

VRE or not VRE - "always ask twice... or thrice..." 9(2)

Varicella
Chikungunya and dengue virus (Alphavirus) - Fact sheet 15(3)
Hospital separations in the NT for varicella-zoster virus related illnesses,
1993-1997 6(4)
Usefulness of self-reported history in adult women in the Top End 6(4)
Varicella vaccine workshop, Melbourne, Dec 1999 6(4)
Varicella-zoster virus in pregnant women and babies 6(4)

Viral meningitis 1(6)

Water Quality (see Environmental Health)
Water related injuries -see injury prevention

Website - The what and how of the AIDS/STD website 9(3)

WHO Reports 3(2-4); 5(2)

Wicked problems: climate change and indigenous health 15(4)
Important notice: Influenza vaccine for children

- Bio CSL’s seasonal influenza vaccine Fluvax® is **NOT** registered for use in children under 5 years.
- There is also a ‘precaution’ for the use of Fluvax® in children aged 5 years to < 10 years.
- The recommendation in the NT is to use alternative influenza vaccines for children between 6 months and < 10 years of age.

National Immunisation Program – funded vaccine for children with medical conditions predisposing them to severe influenza

| All children 6 months – 35 months | VAXIGRIP JUNIOR® 0.25ml IMI
* (1 or 2 doses may be required) |
|----------------------------------|----------------------------------|
| All children 3 years - <10 years | VAXIGRIP ® 0.5ml IMI
* (1 or 2 doses may be required) |

* 2 doses of vaccine given at least 1 month apart are recommended for children ≤ 9 years of age who are receiving influenza vaccine for the first time

* If a child 6 months - ≤ 9 years of age receiving influenza vaccine for the first time inadvertently does not receive the second dose in the same year, he/she should have 2 doses given in the following year

Children not eligible for the funded influenza vaccine under the National Immunisation Program can purchase the vaccine if their parents wish them to be vaccinated. Vaxigrip®, Aggripal®, Fluarix® and Influvac® can be used in any children 6 months of age or older.

All healthcare workers are encouraged to be vaccinated against influenza. Personal protective measures such as handwashing and covering the mouth and nose when sneezing and coughing are important but vaccination against influenza is the best way to protect staff and patients.